Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
RNA ; 2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33619169

ABSTRACT

RtcB enzymes comprise a widely distributed family of manganese- and GTP-dependent RNA repair enzymes that join 2',3'-cyclic phosphate ends to 5'-OH ends via RtcB-(histidinyl-N)-GMP, RNA 3'-phosphate, and RNA3'pp5'G intermediates. RtcB can ligate either 5'-OH RNA or 5'-OH DNA strands in vitro. The nucleic acid contacts of RtcB are uncharted. Here we report a 2.7 Å crystal structure of Pyrococcus horikoshii RtcB in complex with a 6-mer 5'-OH DNA oligonucleotide HOA1pT2pG3pT4pC5pC6, which reveals enzymic contacts of Asn202 to the terminal 5'-OH nucleophile; Arg238 to the A1pT2 and T2pG3 phosphates; Arg190 and Gln194 to the T2pG3 phosphate; and an Arg190 π-cation interaction with the G3 nucleobase. The structural insights affirm functional studies of E. coli RtcB that implicated the conserved counterpart of Arg238 in engagement of the 5'-OH strand for ligation. The essential active site Cys98 that coordinates two manganese ions is oxidized to cysteine sulfonic acid in our structure, raising the prospect that RtcB activity might be sensitive to modulation during oxidative stress.

2.
RNA ; 2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34088850

ABSTRACT

Polynucleotide phosphorylase (PNPase) catalyzes stepwise phosphorolysis of the 3'-terminal phosphodiesters of RNA chains to yield nucleoside diphosphate products. In the reverse reaction PNPase acts as a polymerase, using NDPs as substrates to add NMPs to the 3'-OH terminus of RNA chains while expelling inorganic phosphate. The apparent essentiality of PNPase for growth of M. tuberculosis militates for mycobacterial PNPase as a potential drug target. A cryo-EM structure of Mycobacterium smegmatis PNPase (MsmPNPase) reveals a characteristic ring-shaped homotrimer in which each protomer consists of two RNase PH-like domains and an intervening α-helical module on the inferior surface of the ring. The C-terminal KH and S1 domains, which impart RNA specificity to MsmPNPase, are on the opposite face of the core ring and are conformationally mobile. Single particle reconstructions of MsmPNPase in the act of poly(A) synthesis highlight a 3'-terminal (rA)4 oligonucleotide and two magnesium ions in the active site and an adenine nucleobase in the central tunnel. We identify amino acids that engage the 3' segment of the RNA chain (Phe68, Arg105, Arg112, Arg430, Arg431) and the two metal ions (Asp526, Asp532, Gln546, Asp548) and we infer those that bind inorganic phosphate (Thr470, Ser471, His435, Lys534). Alanine mutagenesis pinpointed RNA and phosphate contacts as essential (Arg105, Arg431, Lys534, Thr470+Ser471), important (Arg112, Arg430), or unimportant (Phe68) for PNPase activity. Severe phosphorolysis and polymerase defects accompanying alanine mutations of the enzymic metal ligands suggest a two-metal mechanism of catalysis by MsmPNPase.

3.
Nucleic Acids Res ; 48(10): 5603-5615, 2020 06 04.
Article in English | MEDLINE | ID: mdl-32315072

ABSTRACT

Naegleria gruberi RNA ligase (NgrRnl) exemplifies the Rnl5 family of adenosine triphosphate (ATP)-dependent polynucleotide ligases that seal 3'-OH RNA strands in the context of 3'-OH/5'-PO4 nicked duplexes. Like all classic ligases, NgrRnl forms a covalent lysyl-AMP intermediate. A two-metal mechanism of lysine adenylylation was established via a crystal structure of the NgrRnl•ATP•(Mn2+)2 Michaelis complex. Here we conducted an alanine scan of active site constituents that engage the ATP phosphates and the metal cofactors. We then determined crystal structures of ligase-defective NgrRnl-Ala mutants in complexes with ATP/Mn2+. The unexpected findings were that mutations K170A, E227A, K326A and R149A (none of which impacted overall enzyme structure) triggered adverse secondary changes in the active site entailing dislocations of the ATP phosphates, altered contacts to ATP, and variations in the numbers and positions of the metal ions that perverted the active sites into off-pathway states incompatible with lysine adenylylation. Each alanine mutation elicited a distinctive off-pathway distortion of the ligase active site. Our results illuminate a surprising plasticity of the ligase active site in its interactions with ATP and metals. More broadly, they underscore a valuable caveat when interpreting mutational data in the course of enzyme structure-function studies.


Subject(s)
Alanine , Amino Acid Substitution , Lysine/chemistry , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/genetics , Adenosine Monophosphate/chemistry , Adenosine Triphosphate/chemistry , Catalytic Domain , Lysine/metabolism , Manganese/chemistry , Models, Molecular , Naegleria/enzymology , RNA Ligase (ATP)/metabolism
4.
Nucleic Acids Res ; 48(6): 3165-3180, 2020 04 06.
Article in English | MEDLINE | ID: mdl-32034423

ABSTRACT

Mycobacterial Pol1 is a bifunctional enzyme composed of an N-terminal DNA flap endonuclease/5' exonuclease domain (FEN/EXO) and a C-terminal DNA polymerase domain (POL). Here we document additional functions of Pol1: FEN activity on the flap RNA strand of an RNA:DNA hybrid and reverse transcriptase activity on a DNA-primed RNA template. We report crystal structures of the POL domain, as apoenzyme and as ternary complex with 3'-dideoxy-terminated DNA primer-template and dNTP. The thumb, palm, and fingers subdomains of POL form an extensive interface with the primer-template and the triphosphate of the incoming dNTP. Progression from an open conformation of the apoenzyme to a nearly closed conformation of the ternary complex entails a disordered-to-ordered transition of several segments of the thumb and fingers modules and an inward motion of the fingers subdomain-especially the O helix-to engage the primer-template and dNTP triphosphate. Distinctive structural features of mycobacterial Pol1 POL include a manganese binding site in the vestigial 3' exonuclease subdomain and a non-catalytic water-bridged magnesium complex at the protein-DNA interface. We report a crystal structure of the bifunctional FEN/EXO-POL apoenzyme that reveals the positions of two active site metals in the FEN/EXO domain.


Subject(s)
DNA Polymerase I/genetics , DNA-Directed DNA Polymerase/genetics , Flap Endonucleases/genetics , Phosphodiesterase I/genetics , Binding Sites , Crystallography, X-Ray , DNA Polymerase I/chemistry , DNA Replication/genetics , DNA-Directed DNA Polymerase/chemistry , Flap Endonucleases/chemistry , Magnesium/chemistry , Mycobacterium/enzymology , Mycobacterium/genetics , Nucleic Acid Conformation , Nucleotides/genetics , Phosphodiesterase I/chemistry
5.
Nucleic Acids Res ; 47(22): 11826-11838, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31722405

ABSTRACT

Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave ß sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.


Subject(s)
Catalytic Domain , Guanosine Triphosphate/metabolism , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/metabolism , Amino Acid Sequence , Base Sequence , Candida albicans , Catalytic Domain/genetics , Crystallography, X-Ray , Models, Molecular , Nucleotidases/chemistry , Polynucleotide 5'-Hydroxyl-Kinase/chemistry , Protein Binding , Protein Conformation , Protein Folding , RNA Ligase (ATP)/genetics , Structure-Activity Relationship
6.
Nucleic Acids Res ; 47(3): 1428-1439, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30590734

ABSTRACT

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase (CPD) and central GTP-dependent polynucleotide kinase (KIN) domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ATP-dependent ligase domain (LIG). Here we report crystal structures of the Trl1-LIG domain from Chaetomium thermophilum at two discrete steps along the reaction pathway: the covalent LIG-(lysyl-Nζ)-AMP•Mn2+ intermediate and a LIG•ATP•(Mn2+)2 Michaelis complex. The structures highlight a two-metal mechanism whereby a penta-hydrated metal complex stabilizes the transition state of the ATP α phosphate and a second metal bridges the ß and γ phosphates to help orient the pyrophosphate leaving group. A LIG-bound sulfate anion is a plausible mimetic of the essential RNA terminal 2'-PO4. Trl1-LIG has a distinctive C-terminal domain that instates fungal Trl1 as the founder of an Rnl6 clade of ATP-dependent RNA ligase. We discuss how the Trl1-LIG structure rationalizes the large body of in vivo structure-function data for Saccharomyces cerevisiae Trl1.


Subject(s)
Chaetomium/chemistry , DNA Ligase ATP/chemistry , Phosphoric Diester Hydrolases/chemistry , Polynucleotide 5'-Hydroxyl-Kinase/chemistry , Polynucleotide Ligases/chemistry , Structure-Activity Relationship , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/genetics , Amino Acid Sequence , Catalytic Domain , Chaetomium/enzymology , Crystallography, X-Ray , DNA Ligase ATP/genetics , Metals/chemistry , Phosphoric Diester Hydrolases/genetics , Polynucleotide 5'-Hydroxyl-Kinase/genetics , Polynucleotide Ligases/genetics , Protein Conformation , Protein Domains , RNA Splicing/genetics , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/enzymology
7.
J Biol Chem ; 294(19): 7931-7941, 2019 05 10.
Article in English | MEDLINE | ID: mdl-30894417

ABSTRACT

A recently identified and widely prevalent prokaryal gene cluster encodes a suite of enzymes with imputed roles in nucleic acid repair. The enzymes are as follows: MPE, a DNA endonuclease; Lhr-Core, a 3'-5' DNA helicase; LIG, an ATP-dependent DNA ligase; and Exo, a metallo-ß-lactamase-family nuclease. Bacterial and archaeal MPE proteins belong to the binuclear metallophosphoesterase superfamily that includes the well-studied DNA repair nucleases Mre11 and SbcD. Here, we report that the Pseudomonas putida MPE protein is a manganese-dependent DNA endonuclease that incises either linear single strands or the single-strand loops of stem-loop DNA structures. MPE has feeble activity on duplex DNA. A crystal structure of MPE at 2.2 Å resolution revealed that the active site includes two octahedrally coordinated manganese ions. Seven signature amino acids of the binuclear metallophosphoesterase superfamily serve as the enzymic metal ligands in MPE: Asp33, His35, Asp78, Asn112, His124, His146, and His158 A swath of positive surface potential on either side of the active site pocket suggests a binding site for the single-strand DNA substrate. The structure of MPE differs from Mre11 and SbcD in several key respects: (i) MPE is a monomer, whereas Mre11 and SbcD are homodimers; (ii) MPE lacks the capping domain present in Mre11 and SbcD; and (iii) the topology of the ß sandwich that comprises the core of the metallophosphoesterase fold differs in MPE vis-à-vis Mre11 and SbcD. We surmise that MPE exemplifies a novel clade of DNA endonuclease within the binuclear metallophosphoesterase superfamily.


Subject(s)
Bacterial Proteins , Endodeoxyribonucleases , Manganese , Multigene Family , Pseudomonas/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Single-Stranded/chemistry , DNA, Single-Stranded/genetics , DNA, Single-Stranded/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/genetics , Endodeoxyribonucleases/metabolism , Manganese/chemistry , Manganese/metabolism , Protein Multimerization , Protein Structure, Secondary , Pseudomonas/genetics
8.
J Biol Chem ; 294(13): 5094-5104, 2019 03 29.
Article in English | MEDLINE | ID: mdl-30718283

ABSTRACT

DNA ligases are the sine qua non of genome integrity and essential for DNA replication and repair in all organisms. DNA ligases join 3'-OH and 5'-PO4 ends via a series of three nucleotidyl transfer steps. In step 1, ligase reacts with ATP or NAD+ to form a covalent ligase-(lysyl-Nζ)-AMP intermediate and release pyrophosphate (PPi) or nicotinamide mononucleotide. In step 2, AMP is transferred from ligase-adenylate to the 5'-PO4 DNA end to form a DNA-adenylate intermediate (AppDNA). In step 3, ligase catalyzes attack by a DNA 3'-OH on the DNA-adenylate to seal the two ends via a phosphodiester bond and release AMP. Eukaryal, archaeal, and many bacterial and viral DNA ligases are ATP-dependent. The catalytic core of ATP-dependent DNA ligases consists of an N-terminal nucleotidyltransferase domain fused to a C-terminal OB domain. Here we report crystal structures at 1.4-1.8 Å resolution of Mycobacterium tuberculosis LigD, an ATP-dependent DNA ligase dedicated to nonhomologous end joining, in complexes with ATP that highlight large movements of the OB domain (∼50 Å), from a closed conformation in the ATP complex to an open conformation in the covalent ligase-AMP intermediate. The LigD·ATP structures revealed a network of amino acid contacts to the ATP phosphates that stabilize the transition state and orient the PPi leaving group. A complex with ATP and magnesium suggested a two-metal mechanism of lysine adenylylation driven by a catalytic Mg2+ that engages the ATP α phosphate and a second metal that bridges the ATP ß and γ phosphates.


Subject(s)
Adenosine Triphosphate/metabolism , Bacterial Proteins/metabolism , DNA Ligases/metabolism , Mycobacterium tuberculosis/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , DNA Ligases/chemistry , Humans , Magnesium/metabolism , Models, Molecular , Mycobacterium tuberculosis/chemistry , Protein Conformation , Protein Domains , Sequence Alignment , Tuberculosis/microbiology
9.
Nucleic Acids Res ; 46(21): 11262-11273, 2018 11 30.
Article in English | MEDLINE | ID: mdl-30212894

ABSTRACT

Pho7, a member of the Zn2Cys6 family of fungal transcription factors, is the key transcriptional activator underlying fission yeast phosphate homeostasis, a physiological response to phosphate starvation in which the pho1, pho84 and tgp1 genes are upregulated. Here, we delineated a minimized 61-amino-acid Pho7 DNA-binding domain (DBD) and determined the 1.7 Å crystal structure of the DBD at its target site in the tgp1 promoter. Two distinctive features of the Pho7 DBD are: it binds DNA as a monomer, unlike most other fungal zinc-cluster factors that bind as homodimers; and it makes extensive interactions with its asymmetric target sequence over a 14-bp footprint that entails hydrogen bonding to 13 individual bases within, and remote from, the CGG triplet typically recognized by other Zn2Cys6 DBDs. Base pair substitutions at Pho7 sites in the tgp1 and pho1 promoters highlight the importance of the 5'-CGG triplet for Pho7 binding in vitro and Pho7-dependent gene expression in vivo. We identify several DBD amino acids at which alanine substitution effaced or attenuated the pho1 phosphate starvation response and concordantly reduced Pho7 binding to a pho1 promoter site.


Subject(s)
DNA, Fungal/metabolism , Homeostasis , Phosphates/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Transcription Factors/metabolism , Crystallography, X-Ray , DNA, Fungal/chemistry , DNA, Fungal/genetics , Gene Expression Regulation, Fungal , Models, Molecular , Nucleic Acid Conformation , Promoter Regions, Genetic/genetics , Protein Domains , Schizosaccharomyces/genetics , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces pombe Proteins/genetics , Transcription Factors/chemistry , Transcription Factors/genetics
10.
Nucleic Acids Res ; 46(8): 4164-4175, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29635474

ABSTRACT

Mycobacterium smegmatis FenA is a nucleic acid phosphodiesterase with flap endonuclease and 5' exonuclease activities. The 1.8 Å crystal structure of FenA reported here highlights as its closest homologs bacterial FEN-family enzymes ExoIX, the Pol1 exonuclease domain and phage T5 Fen. Mycobacterial FenA assimilates three active site manganese ions (M1, M2, M3) that are coordinated, directly and via waters, to a constellation of eight carboxylate side chains. We find via mutagenesis that the carboxylate contacts to all three manganese ions are essential for FenA's activities. Structures of nuclease-dead FenA mutants D125N, D148N and D208N reveal how they fail to bind one of the three active site Mn2+ ions, in a distinctive fashion for each Asn change. The structure of FenA D208N with a phosphate anion engaged by M1 and M2 in a state mimetic of a product complex suggests a mechanism for metal-catalyzed phosphodiester hydrolysis similar to that proposed for human Exo1. A distinctive feature of FenA is that it does not have the helical arch module found in many other FEN/FEN-like enzymes. Instead, this segment of FenA adopts a unique structure comprising a short 310 helix and surface ß-loop that coordinates a fourth manganese ion (M4).


Subject(s)
Bacterial Proteins/chemistry , Flap Endonucleases/chemistry , Manganese/chemistry , Mycobacterium smegmatis/enzymology , Phosphodiesterase I/chemistry , Alanine/genetics , Amino Acid Substitution , Asparagine/genetics , Aspartic Acid/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Crystallography, X-Ray , Flap Endonucleases/genetics , Flap Endonucleases/metabolism , Models, Molecular , Mutation , Phosphodiesterase I/genetics , Phosphodiesterase I/metabolism
11.
Proc Natl Acad Sci U S A ; 114(10): 2592-2597, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223499

ABSTRACT

Polynucleotide ligases comprise a ubiquitous superfamily of nucleic acid repair enzymes that join 3'-OH and 5'-PO4 DNA or RNA ends. Ligases react with ATP or NAD+ and a divalent cation cofactor to form a covalent enzyme-(lysine-Nζ)-adenylate intermediate. Here, we report crystal structures of the founding members of the ATP-dependent RNA ligase family (T4 RNA ligase 1; Rnl1) and the NAD+-dependent DNA ligase family (Escherichia coli LigA), captured as their respective Michaelis complexes, which illuminate distinctive catalytic mechanisms of the lysine adenylylation reaction. The 2.2-Å Rnl1•ATP•(Mg2+)2 structure highlights a two-metal mechanism, whereby: a ligase-bound "catalytic" Mg2+(H2O)5 coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; a second octahedral Mg2+ coordination complex bridges the ß and γ phosphates; and protein elements unique to Rnl1 engage the γ phosphate and associated metal complex and orient the pyrophosphate leaving group for in-line catalysis. By contrast, the 1.55-Å LigA•NAD+•Mg2+ structure reveals a one-metal mechanism in which a ligase-bound Mg2+(H2O)5 complex lowers the lysine pKa and engages the NAD+ α phosphate, but the ß phosphate and the nicotinamide nucleoside of the nicotinamide mononucleotide (NMN) leaving group are oriented solely via atomic interactions with protein elements that are unique to the LigA clade. The two-metal versus one-metal dichotomy demarcates a branchpoint in ligase evolution and favors LigA as an antibacterial drug target.


Subject(s)
DNA Ligases/chemistry , Escherichia coli Proteins/chemistry , Multiprotein Complexes/chemistry , Protein Conformation , RNA Ligase (ATP)/chemistry , Viral Proteins/chemistry , Adenosine Triphosphate/chemistry , Catalytic Domain , Crystallography, X-Ray , DNA Ligases/metabolism , Escherichia coli/enzymology , Escherichia coli Proteins/metabolism , Lysine/chemistry , Metals/chemistry , NAD/chemistry , RNA Ligase (ATP)/metabolism , Viral Proteins/metabolism
12.
Nucleic Acids Res ; 45(22): 12945-12953, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29165709

ABSTRACT

Fungal tRNA ligase (Trl1) is an essential enzyme that repairs RNA breaks with 2',3'-cyclic-PO4 and 5'-OH ends inflicted during tRNA splicing and non-canonical mRNA splicing in the fungal unfolded protein response. Trl1 is composed of C-terminal cyclic phosphodiesterase and central polynucleotide kinase domains that heal the broken ends to generate the 3'-OH,2'-PO4 and 5'-PO4 termini required for sealing by an N-terminal ligase domain. Trl1 enzymes are found in all human fungal pathogens and are promising targets for antifungal drug discovery because their domain compositions and biochemical mechanisms are unique compared to the mammalian RtcB-type tRNA splicing enzyme. A distinctive feature of Trl1 is its preferential use of GTP as phosphate donor for the RNA kinase reaction. Here we report the 2.2 Å crystal structure of the kinase domain of Trl1 from the fungal pathogen Candida albicans with GDP and Mg2+ in the active site. The P-loop phosphotransferase fold of the kinase is embellished by a unique 'G-loop' element that accounts for guanine nucleotide specificity. Mutations of amino acids that contact the guanine nucleobase efface kinase activity in vitro and Trl1 function in vivo. Our findings fortify the case for the Trl1 kinase as an antifungal target.


Subject(s)
Catalytic Domain , Fungal Proteins/metabolism , Guanosine Triphosphate/metabolism , RNA Ligase (ATP)/metabolism , RNA/metabolism , Amino Acid Sequence , Candida albicans/enzymology , Candida albicans/genetics , Crystallography, X-Ray , Fungal Proteins/chemistry , Fungal Proteins/genetics , Guanosine Triphosphate/chemistry , Magnesium/chemistry , Magnesium/metabolism , Models, Molecular , Mutation , Protein Binding , RNA/genetics , RNA Ligase (ATP)/chemistry , RNA Ligase (ATP)/genetics , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sequence Homology, Amino Acid , Substrate Specificity
13.
RNA ; 22(7): 1011-25, 2016 07.
Article in English | MEDLINE | ID: mdl-27165520

ABSTRACT

Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA.


Subject(s)
Acid Phosphatase/genetics , Gene Expression Regulation, Fungal , Phosphates/metabolism , RNA Polymerase II/metabolism , RNA, Long Noncoding/genetics , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/genetics , Transcription, Genetic , mRNA Cleavage and Polyadenylation Factors/metabolism , Genes, Fungal , Homeostasis , Phosphorylation , Plasmids , Promoter Regions, Genetic , RNA Polymerase II/chemistry
14.
Proc Natl Acad Sci U S A ; 112(45): 13868-73, 2015 Nov 10.
Article in English | MEDLINE | ID: mdl-26512110

ABSTRACT

ATP-dependent RNA ligases are agents of RNA repair that join 3'-OH and 5'-PO4 RNA ends. Naegleria gruberi RNA ligase (NgrRnl) exemplifies a family of RNA nick-sealing enzymes found in bacteria, viruses, and eukarya. Crystal structures of NgrRnl at three discrete steps along the reaction pathway-covalent ligase-(lysyl-Nζ)-AMP•Mn(2+) intermediate; ligase•ATP•(Mn(2+))2 Michaelis complex; and ligase•Mn(2+) complex-highlight a two-metal mechanism of nucleotidyl transfer, whereby (i) an enzyme-bound "catalytic" metal coordination complex lowers the pKa of the lysine nucleophile and stabilizes the transition state of the ATP α phosphate; and (ii) a second metal coordination complex bridges the ß- and γ-phosphates. The NgrRnl N domain is a distinctively embellished oligonucleotide-binding (OB) fold that engages the γ-phosphate and associated metal complex and orients the pyrophosphate leaving group for in-line catalysis with stereochemical inversion at the AMP phosphate. The unique domain architecture of NgrRnl fortifies the theme that RNA ligases have evolved many times, and independently, by fusions of a shared nucleotidyltransferase domain to structurally diverse flanking modules. The mechanistic insights to lysine adenylylation gained from the NgrRnl structures are likely to apply broadly to the covalent nucleotidyltransferase superfamily of RNA ligases, DNA ligases, and RNA capping enzymes.


Subject(s)
RNA Ligase (ATP)/metabolism , Amino Acid Sequence , Catalysis , Deinococcus/enzymology , Models, Molecular , Molecular Sequence Data , Protein Conformation , RNA Ligase (ATP)/chemistry
15.
PLoS Genet ; 11(6): e1005262, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26102509

ABSTRACT

Somatic mutations affecting ETV6 often occur in acute lymphoblastic leukemia (ALL), the most common childhood malignancy. The genetic factors that predispose to ALL remain poorly understood. Here we identify a novel germline ETV6 p. L349P mutation in a kindred affected by thrombocytopenia and ALL. A second ETV6 p. N385fs mutation was identified in an unrelated kindred characterized by thrombocytopenia, ALL and secondary myelodysplasia/acute myeloid leukemia. Leukemic cells from the proband in the second kindred showed deletion of wild type ETV6 with retention of the ETV6 p. N385fs. Enforced expression of the ETV6 mutants revealed normal transcript and protein levels, but impaired nuclear localization. Accordingly, these mutants exhibited significantly reduced ability to regulate the transcription of ETV6 target genes. Our findings highlight a novel role for ETV6 in leukemia predisposition.


Subject(s)
Germ-Line Mutation , Mutation, Missense , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Thrombocytopenia/genetics , Amino Acid Sequence , Case-Control Studies , HeLa Cells , Humans , Molecular Sequence Data , Proto-Oncogene Proteins c-ets/chemistry , Proto-Oncogene Proteins c-ets/metabolism , Repressor Proteins/chemistry , Repressor Proteins/metabolism , ETS Translocation Variant 6 Protein
16.
J Immunol ; 195(3): 1242-50, 2015 Aug 01.
Article in English | MEDLINE | ID: mdl-26109640

ABSTRACT

KIR3DL1 is a polymorphic inhibitory receptor that modulates NK cell activity through interacting with HLA-A and HLA-B alleles that carry the Bw4 epitope. Amino acid polymorphisms throughout KIR3DL1 impact receptor surface expression and affinity for HLA. KIR3DL1/S1 encodes inhibitory and activating alleles, but despite high homology with KIR3DL1, the activating receptor KIR3DS1 does not bind the same ligand. Allele KIR3DL1*009 resulted from a gene recombination event between the inhibitory receptor allele KIR3DL1*001 and the activating receptor allele KIR3DS1*013. This study analyzed the functional impact of KIR3DS1-specific polymorphisms on KIR3DL1*009 surface expression, binding to HLA, and functional capacity. Flow-cytometric analysis of primary human NK cells as well as transfected HEK293T cells shows that KIR3DL1*009 is expressed at a significantly lower surface density compared with KIR3DL1*001. Using recombinant proteins of KIR3DL1*001, KIR3DL1*009, and KIR3DS1*013 to analyze binding to HLA, we found that although KIR3DL1*009 displayed some evidence of binding to HLA compared with KIR3DS1*013, the binding was minimal compared with KIR3DL1*001 and KIR3DL1*005. Mutagenesis of polymorphic sites revealed that the surface phenotype and reduced binding of KIR3DL1*009 are caused by the combined amino acid polymorphisms at positions 58 and 92 within the D0 extracellular domain. Resulting from these effects, KIR3DL1*009(+) NK cells exhibited significantly less inhibition by HLA-Bw4(+) target cells compared with KIR3DL1*001(+) NK cells. The data from this study contribute novel insight into how KIR3DS1-specific polymorphisms in the extracellular region impact KIR3DL1 surface expression, ligand binding, and inhibitory function.


Subject(s)
HLA-A Antigens/immunology , HLA-B Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR3DL1/genetics , Receptors, KIR3DS1/genetics , Amino Acid Sequence , Cell Line , HEK293 Cells , HLA-A Antigens/genetics , HLA-B Antigens/genetics , Humans , Polymorphism, Single Nucleotide/genetics , Protein Binding/genetics , Protein Binding/immunology , Receptors, KIR3DL1/biosynthesis
17.
J Biol Chem ; 290(50): 30018-29, 2015 Dec 11.
Article in English | MEDLINE | ID: mdl-26487718

ABSTRACT

B7-H3 (CD276) is both an inhibitory ligand for natural killer cells and T cells and a tumor antigen that is widely expressed among human solid tumors. Anti-B7-H3 mouse monoclonal antibody 8H9 has been successfully used for radioimmunotherapy for patients with B7-H3(+) tumors. We present the humanization, affinity maturation, and epitope mapping of 8H9 based on structure determination, modeling, and yeast display methods. The crystal structure of ch8H9 Fab fragment was solved to 2.5-Å resolution and used as a template for humanization. By displaying the humanized 8H9 single chain Fv (scFv) on the surface of yeast, the affinity was matured by sequential random mutagenesis and fluorescence-activated cell sorting. Six mutations (three in the complementarity-determining region and three in the framework regions) were identified and incorporated into an affinity-matured humanized 8H9 construct (hu8H9-6m) and an affinity-matured chimeric 8H9 construct (ch8H9-6m). The hu8H9-6m scFv had a 160-fold improvement in affinity (0.9 nm KD) compared with parental hu8H9 scFv (144 nm KD). The IgG formats of ch8H9-6m and hu8H9-6m (nanomolar to subnanomolar KD) had 2-9-fold enhancements in affinity compared with their parental forms, potent in vitro antibody-dependent cell-mediated cytotoxicity (0.1-0.3 µg/ml EC50), and high tumor uptake in mouse xenografts. Based on in silico docking studies and experimental validation, the molecular epitope of 8H9 was determined to be dependent on the FG loop of B7-H3, a region critical to its function in immunologic blockade and unique among anti-B7-H3 antibodies published to date.


Subject(s)
Antibodies, Monoclonal/immunology , B7 Antigens/immunology , Neoplasms/therapy , Amino Acid Sequence , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal, Murine-Derived , Cell Line, Tumor , Crystallography, X-Ray , Humans , Molecular Sequence Data , Neoplasms/immunology , Sequence Homology, Amino Acid
18.
Proc Natl Acad Sci U S A ; 110(36): 14634-9, 2013 Sep 03.
Article in English | MEDLINE | ID: mdl-23959867

ABSTRACT

Eph receptor tyrosine kinases and their ephrin ligands mediate cell signaling during normal and oncogenic development. Eph signaling is initiated in a multistep process leading to the assembly of higher-order Eph/ephrin clusters that set off bidirectional signaling in interacting cells. Eph and ephrins are divided in two subclasses based on their abilities to bind and activate each other and on sequence conservation. EphA4 is an exception to the general rule because it can be activated by both A- and B-class ephrin ligands. Here we present high-resolution structures of the complete EphA4 ectodomain and its complexes with ephrin-A5. The structures reveal how ligand binding promotes conformational changes in the EphA4 ligand-binding domain allowing the formation of signaling clusters at the sites of cell-cell contact. In addition, the structural data, combined with structure-based mutagenesis, reveal a previously undescribed receptor-receptor interaction between the EphA4 ligand-binding and membrane-proximal fibronectin domains, which is functionally important for efficient receptor activation.


Subject(s)
Ephrin-A5/chemistry , Protein Structure, Tertiary , Receptor, EphA4/chemistry , Signal Transduction , Binding Sites/genetics , Blotting, Western , Crystallography, X-Ray , Enzyme Activation , Ephrin-A5/genetics , Ephrin-A5/metabolism , HEK293 Cells , Humans , Models, Molecular , Mutation , Protein Binding , Protein Conformation , Protein Multimerization , Receptor, EphA4/genetics , Receptor, EphA4/metabolism
19.
Proc Natl Acad Sci U S A ; 110(18): 7205-10, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23592718

ABSTRACT

Angiogenesis is a complex cellular process involving multiple regulatory growth factors and growth factor receptors. Among them, the ligands for the endothelial-specific tunica intima endothelial receptor tyrosine kinase 2 (Tie2) receptor kinase, angiopoietin-1 (Ang1) and Ang2, play essential roles in balancing vessel stability and regression during both developmental and tumor-induced angiogenesis. Despite possessing a high degree of sequence identity, Ang1 and Ang2 have distinct functional roles and cell-signaling characteristics. Here, we present the crystal structures of Ang1 both unbound and in complex with the Tie2 ectodomain. Comparison of the Ang1-containing structures with their Ang2-containing counterparts provide insight into the mechanism of receptor activation and reveal molecular surfaces important for interactions with Tie2 coreceptors and associated signaling proteins. Using structure-based mutagenesis, we identify a loop within the angiopoietin P domain, adjacent to the receptor-binding interface, which confers the specific agonist/antagonist properties of the molecule. We demonstrate using cell-based assays that an Ang2 chimera containing the Ang1 loop sequence behaves functionally similarly to Ang1 as a constitutive Tie2 agonist, able to efficiently dissociate the inhibitory Tie1/Tie2 complex and elicit Tie2 clustering and downstream signaling.


Subject(s)
Angiopoietin-1/chemistry , Angiopoietin-1/metabolism , Signal Transduction , Angiopoietin-2/chemistry , Angiopoietin-2/metabolism , Conserved Sequence , Crystallography, X-Ray , HEK293 Cells , Humans , Models, Molecular , Protein Structure, Tertiary , Receptor, TIE-1/chemistry , Receptor, TIE-1/metabolism , Receptor, TIE-2/chemistry , Receptor, TIE-2/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Static Electricity , Structure-Activity Relationship
20.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 12): 2364-71, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26627645

ABSTRACT

Tryptophanase (Trpase) is a pyridoxal 5'-phosphate (PLP)-dependent homotetrameric enzyme which catalyzes the degradation of L-tryptophan. Trpase is also known for its cold lability, which is a reversible loss of activity at low temperature (2°C) that is associated with the dissociation of the tetramer. Escherichia coli Trpase dissociates into dimers, while Proteus vulgaris Trpase dissociates into monomers. As such, this enzyme is an appropriate model to study the protein-protein interactions and quaternary structure of proteins. The aim of the present study was to understand the differences in the mode of dissociation between the E. coli and P. vulgaris Trpases. In particular, the effect of mutations along the molecular axes of homotetrameric Trpase on its dissociation was studied. To answer this question, two groups of mutants of the E. coli enzyme were created to resemble the amino-acid sequence of P. vulgaris Trpase. In one group, residues 15 and 59 that are located along the molecular axis R (also termed the noncatalytic axis) were mutated. The second group included a mutation at position 298, located along the molecular axis Q (also termed the catalytic axis). Replacing amino-acid residues along the R axis resulted in dissociation of the tetramers into monomers, similar to the P. vulgaris Trpase, while replacing amino-acid residues along the Q axis resulted in dissociation into dimers only. The crystal structure of the V59M mutant of E. coli Trpase was also determined in its apo form and was found to be similar to that of the wild type. This study suggests that in E. coli Trpase hydrophobic interactions along the R axis hold the two monomers together more strongly, preventing the dissociation of the dimers into monomers. Mutation of position 298 along the Q axis to a charged residue resulted in tetramers that are less susceptible to dissociation. Thus, the results indicate that dissociation of E. coli Trpase into dimers occurs along the molecular Q axis.


Subject(s)
Bacterial Proteins/chemistry , Escherichia coli/chemistry , Protein Subunits/chemistry , Proteus vulgaris/chemistry , Tryptophan/chemistry , Tryptophanase/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Biocatalysis , Crystallography, X-Ray , Escherichia coli/enzymology , Escherichia coli/genetics , Gene Expression , Kinetics , Models, Molecular , Mutation , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Protein Subunits/genetics , Protein Subunits/metabolism , Proteus vulgaris/enzymology , Proteus vulgaris/genetics , Pyridoxal Phosphate/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Species Specificity , Structural Homology, Protein , Tryptophan/metabolism , Tryptophanase/genetics , Tryptophanase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL