Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Int J Mol Sci ; 24(12)2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37372953

ABSTRACT

Extensive evidence indicates that the activation of the P2X7 receptor (P2X7R), an ATP-gated ion channel highly expressed in immune and brain cells, is strictly associated with the release of extracellular vesicles. Through this process, P2X7R-expressing cells regulate non-classical protein secretion and transfer bioactive components to other cells, including misfolded proteins, participating in inflammatory and neurodegenerative diseases. In this review, we summarize and discuss the studies addressing the impact of P2X7R activation on extracellular vesicle release and their activities.


Subject(s)
Brain , Extracellular Vesicles , Receptors, Purinergic P2X7 , Adenosine Triphosphate
2.
Int J Mol Sci ; 24(19)2023 Sep 29.
Article in English | MEDLINE | ID: mdl-37834197

ABSTRACT

Extracellular vesicles (EVs) are nanosized vesicles released by almost all body tissues, representing important mediators of cellular communication, and are thus promising candidate biomarkers for neurodegenerative diseases like Alzheimer's disease (AD). The aim of the present study was to isolate total EVs from plasma and characterize their microRNA (miRNA) contents in AD patients. We isolated total EVs from the plasma of all recruited subjects using ExoQuickULTRA exosome precipitation solution (SBI). Subsequently, circulating total EVs were characterized using Nanosight nanoparticle tracking analysis (NTA), transmission electron microscopy (TEM), and Western blotting. A panel of 754 miRNAs was determined with RT-qPCR using TaqMan OpenArray technology in a QuantStudio 12K System (Thermo Fisher Scientific). The results demonstrated that plasma EVs showed widespread deregulation of specific miRNAs (miR-106a-5p, miR-16-5p, miR-17-5p, miR-195-5p, miR-19b-3p, miR-20a-5p, miR-223-3p, miR-25-3p, miR-296-5p, miR-30b-5p, miR-532-3p, miR-92a-3p, and miR-451a), some of which were already known to be associated with neurological pathologies. A further validation analysis also confirmed a significant upregulation of miR-16-5p, miR-25-3p, miR-92a-3p, and miR-451a in prodromal AD patients, suggesting these dysregulated miRNAs are involved in the early progression of AD.


Subject(s)
Alzheimer Disease , Exosomes , Extracellular Vesicles , MicroRNAs , Humans , Alzheimer Disease/genetics , MicroRNAs/genetics , Biomarkers , Extracellular Vesicles/genetics , Exosomes/genetics
3.
Glia ; 70(1): 89-105, 2022 01.
Article in English | MEDLINE | ID: mdl-34487590

ABSTRACT

Microglia, the brain's resident macrophages, actively contribute to the homeostasis of cerebral parenchyma by sensing neuronal activity and supporting synaptic remodeling and plasticity. While several studies demonstrated different roles for astrocytes in sleep, the contribution of microglia in the regulation of sleep/wake cycle and in the modulation of synaptic activity in the different day phases has not been deeply investigated. Using light as a zeitgeber cue, we studied the effects of microglial depletion with the colony stimulating factor-1 receptor antagonist PLX5622 on the sleep/wake cycle and on hippocampal synaptic transmission in male mice. Our data demonstrate that almost complete microglial depletion increases the duration of NREM sleep and reduces the hippocampal excitatory neurotransmission. The fractalkine receptor CX3CR1 plays a relevant role in these effects, because cx3cr1GFP/GFP mice recapitulate what found in PLX5622-treated mice. Furthermore, during the light phase, microglia express lower levels of cx3cr1 and a reduction of cx3cr1 expression is also observed when cultured microglial cells are stimulated by ATP, a purinergic molecule released during sleep. Our findings suggest that microglia participate in the regulation of sleep, adapting their cx3cr1 expression in response to the light/dark phase, and modulating synaptic activity in a phase-dependent manner.


Subject(s)
Microglia , Synaptic Transmission , Animals , CX3C Chemokine Receptor 1/genetics , CX3C Chemokine Receptor 1/metabolism , Hippocampus/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/metabolism , Neurons/metabolism , Sleep
4.
Brain Behav Immun ; 97: 423-439, 2021 10.
Article in English | MEDLINE | ID: mdl-34343616

ABSTRACT

Chronic psychological stress is one of the most important triggers and environmental risk factors for neuropsychiatric disorders. Chronic stress can influence all organs via the secretion of stress hormones, including glucocorticoids by the adrenal glands, which coordinate the stress response across the body. In the brain, glucocorticoid receptors (GR) are expressed by various cell types including microglia, which are its resident immune cells regulating stress-induced inflammatory processes. To study the roles of microglial GR under normal homeostatic conditions and following chronic stress, we generated a mouse model in which the GR gene is depleted in microglia specifically at adulthood to prevent developmental confounds. We first confirmed that microglia were depleted in GR in our model in males and females among the cingulate cortex and the hippocampus, both stress-sensitive brain regions. Then, cohorts of microglial-GR depleted and wild-type (WT) adult female mice were housed for 3 weeks in a standard or stressful condition, using a chronic unpredictable mild stress (CUMS) paradigm. CUMS induced stress-related behavior in both microglial-GR depleted and WT animals as demonstrated by a decrease of both saccharine preference and progressive ratio breakpoint. Nevertheless, the hippocampal microglial and neural mechanisms underlying the adaptation to stress occurred differently between the two genotypes. Upon CUMS exposure, microglial morphology was altered in the WT controls, without any apparent effect in microglial-GR depleted mice. Furthermore, in the standard environment condition, GR depleted-microglia showed increased expression of pro-inflammatory genes, and genes involved in microglial homeostatic functions (such as Trem2, Cx3cr1 and Mertk). On the contrary, in CUMS condition, GR depleted-microglia showed reduced expression levels of pro-inflammatory genes and increased neuroprotective as well as anti-inflammatory genes compared to WT-microglia. Moreover, in microglial-GR depleted mice, but not in WT mice, CUMS led to a significant reduction of CA1 long-term potentiation and paired-pulse ratio. Lastly, differences in adult hippocampal neurogenesis were observed between the genotypes during normal homeostatic conditions, with microglial-GR deficiency increasing the formation of newborn neurons in the dentate gyrus subgranular zone independently from stress exposure. Together, these findings indicate that, although the deletion of microglial GR did not prevent the animal's ability to respond to stress, it contributed to modulating hippocampal functions in both standard and stressful conditions, notably by shaping the microglial response to chronic stress.


Subject(s)
Microglia , Receptors, Glucocorticoid , Animals , Female , Hippocampus/metabolism , Male , Membrane Glycoproteins , Mice , Microglia/metabolism , Neurogenesis , Neurons/metabolism , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Receptors, Immunologic , Stress, Psychological
5.
Brain Behav Immun ; 81: 484-494, 2019 10.
Article in English | MEDLINE | ID: mdl-31279682

ABSTRACT

An increasing number of studies show that both inflammation and neural plasticity act as key players in the vulnerability and recovery from psychiatric disorders and neurodegenerative diseases. However, the interplay between these two players has been limitedly explored. In fact, while a few studies reported an immune activation, others conveyed an immune suppression, associated with an impairment in neural plasticity. Therefore, we hypothesized that deviations in inflammatory levels in both directions may impair neural plasticity. We tested this hypothesis experimentally, by acute treatment of C57BL/6 adult male mice with different doses of two inflammatory modulators: lipopolysaccharide (LPS), an endotoxin, and ibuprofen (IBU), a nonselective cyclooxygenase inhibitor, which are respectively a pro- and an anti-inflammatory agent. The results showed that LPS and IBU have different effects on behavior and inflammatory response. LPS treatment induced a reduction of body temperature, a decrease of body weight and a reduced food and liquid intake. In addition, it led to increased levels of inflammatory markers expression, both in the total hippocampus and in isolated microglia cells, including Interleukin (IL)-1ß, and enhanced the concentration of prostaglandin E2 (PGE2). On the other hand, IBU increased the level of anti-inflammatory markers, decreased tryptophan 2,3-dioxygenase (TDO2), the first step in the kynurenine pathway known to be activated during inflammatory conditions, and PGE2 levels. Though LPS and IBU administration differently affected mediators related with pro- or anti-inflammatory responses, they produced overlapping effects on neural plasticity. Indeed, higher doses of both LPS and IBU induced a statistically significant decrease in the amplitude of long-term potentiation (LTP), in Brain-Derived Neurotrophic Factor (BDNF) expression levels and in the phosphorylation of the AMPA (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor subunit GluR1, compared to the control group. Such effect appears to be dose-dependent since only the higher, but not the lower, dose of both compounds led to a plasticity impairment. Overall, the present findings indicate that acute treatment with pro- and anti-inflammatory agents impair neural plasticity in a dose dependent manner.


Subject(s)
Brain-Derived Neurotrophic Factor/biosynthesis , Inflammation/metabolism , Long-Term Potentiation/physiology , Neuronal Plasticity/physiology , Animals , Anti-Inflammatory Agents/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Cyclooxygenase Inhibitors/pharmacology , Cytokines/immunology , Cytokines/metabolism , Dinoprostone/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Ibuprofen/pharmacology , Inflammation/immunology , Interleukin-1beta/metabolism , Kynurenine/metabolism , Lipopolysaccharides/pharmacology , Long-Term Potentiation/drug effects , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Microglia/metabolism , Neuronal Plasticity/immunology , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism
6.
Neural Plast ; 2019: 4651031, 2019.
Article in English | MEDLINE | ID: mdl-30804991

ABSTRACT

An increasing number of studies show that selective serotonin reuptake inhibitors (SSRIs) exert their therapeutic action, at least in part, by amplifying the influence of the living environment on mood. As a consequence, when administered in a favorable environment, SSRIs lead to a reduction of symptoms, but in stressful conditions, they show limited efficacy. Therefore, novel therapeutic approaches able to neutralize the influence of the stressful environment on treatment are needed. The aim of our study was to test whether, in a mouse model of depression, the combined administration of SSRI fluoxetine and metformin, a drug able to improve the metabolic profile, counteracts the limited efficacy of fluoxetine alone when administered in stressful conditions. Indeed, metabolic alterations are associated to both the onset of major depression and the antidepressant efficacy. To this goal, adult C57BL/6 male mice were exposed to stress for 6 weeks; the first two weeks was aimed at generating a mouse model of depression. During the remaining 4 weeks, mice received one of the following treatments: vehicle, fluoxetine, metformin, or a combination of fluoxetine and metformin. We measured liking- and wanting-type anhedonia as behavioral phenotypes of depression and assessed the expression levels of selected genes involved in major depressive disorder and antidepressant response in the dorsal and ventral hippocampus, which are differently involved in the depressive symptomatology. The combined treatment was more effective than fluoxetine alone in ameliorating the depressive phenotype after one week of treatment. This was associated to an increase in IGF2 mRNA expression and enhanced long-term potentiation, specifically in the dorsal hippocampus, at the end of treatment. Overall, the present results show that, when administered in stressful conditions, the combined fluoxetine and metformin treatment may represent a more effective approach than fluoxetine alone in a short term. Finally, our findings highlight the relevance of polypharmacological strategy as effective interventions to increase the efficacy of the antidepressant drugs currently available.


Subject(s)
Anhedonia/drug effects , Antidepressive Agents/therapeutic use , Depressive Disorder/drug therapy , Fluoxetine/therapeutic use , Hippocampus/drug effects , Insulin-Like Growth Factor II/metabolism , Metformin/therapeutic use , Animals , Antidepressive Agents/pharmacology , Depressive Disorder/metabolism , Disease Models, Animal , Drug Therapy, Combination , Fluoxetine/pharmacology , Hippocampus/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Male , Metformin/pharmacology , Mice , Selective Serotonin Reuptake Inhibitors/pharmacology , Selective Serotonin Reuptake Inhibitors/therapeutic use
7.
Exp Neurol ; 374: 114716, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38331161

ABSTRACT

SOD1 gene is associated with progressive motor neuron degeneration in the familiar forms of amyotrophic lateral sclerosis. Although studies on mutant human SOD1 transgenic rodent models have provided important insights into disease pathogenesis, they have not led to the discovery of early biomarkers or effective therapies in human disease. The recent generation of a transgenic swine model expressing the human pathological hSOD1G93A gene, which recapitulates the course of human disease, represents an interesting tool for the identification of early disease mechanisms and diagnostic biomarkers. Here, we analyze the activation state of CNS cells in transgenic pigs during the disease course and investigate whether changes in neuronal and glial cell activation state can be reflected by the amount of extracellular vesicles they release in biological fluids. To assess the activation state of neural cells, we performed a biochemical characterization of neurons and glial cells in the spinal cords of hSOD1G93A pigs during the disease course. Quantification of EVs of CNS cell origin was performed in cerebrospinal fluid and plasma of transgenic pigs at different disease stages by Western blot and peptide microarray analyses. We report an early activation of oligodendrocytes in hSOD1G93A transgenic tissue followed by astrocyte and microglia activation, especially in animals with motor symptoms. At late asymptomatic stage, EV production from astrocytes and microglia is increased in the cerebrospinal fluid, but not in the plasma, of transgenic pigs reflecting donor cell activation in the spinal cord. Estimation of EV production by biochemical analyses is corroborated by direct quantification of neuron- and microglia-derived EVs in the cerebrospinal fluid by a Membrane Sensing Peptide enabled on-chip analysis that provides fast results and low sample consumption. Collectively, our data indicate that alteration in astrocytic EV production precedes the onset of disease symptoms in the hSODG93A swine model, mirroring donor cell activation in the spinal cord, and suggest that EV measurements from the cells first activated in the ALS pig model, i.e. OPCs, may further improve early disease detection.


Subject(s)
Amyotrophic Lateral Sclerosis , Extracellular Vesicles , Mice , Animals , Humans , Swine , Superoxide Dismutase-1/genetics , Motor Neurons/metabolism , Superoxide Dismutase/genetics , Mice, Transgenic , Amyotrophic Lateral Sclerosis/pathology , Spinal Cord/pathology , Neuroglia/pathology , Biomarkers/metabolism , Peptides/metabolism , Disease Models, Animal
8.
Front Immunol ; 15: 1331210, 2024.
Article in English | MEDLINE | ID: mdl-38464529

ABSTRACT

Introduction: Microglia and macrophages can influence the evolution of myelin lesions through the production of extracellular vesicles (EVs). While microglial EVs promote in vitro differentiation of oligodendrocyte precursor cells (OPCs), whether EVs derived from macrophages aid or limit OPC maturation is unknown. Methods: Immunofluorescence analysis for the myelin protein MBP was employed to evaluate the impact of EVs from primary rat macrophages on cultured OPC differentiation. Raman spectroscopy and liquid chromatography-mass spectrometry was used to define the promyelinating lipid components of myelin EVs obtained in vitro and isolated from human plasma. Results and discussion: Here we show that macrophage-derived EVs do not promote OPC differentiation, and those released from macrophages polarized towards an inflammatory state inhibit OPC maturation. However, their lipid cargo promotes OPC maturation in a similar manner to microglial EVs. We identify the promyelinating endocannabinoids anandamide and 2-arachidonoylglycerol in EVs released by both macrophages and microglia in vitro and circulating in human plasma. Analysis of OPC differentiation in the presence of the endocannabinoid receptor antagonists SR141716A and AM630 reveals a key role of vesicular endocannabinoids in OPC maturation. From this study, EV-associated endocannabinoids emerge as important mediators in microglia/macrophage-oligodendrocyte crosstalk, which may be exploited to enhance myelin repair.


Subject(s)
Extracellular Vesicles , Microglia , Rats , Animals , Humans , Microglia/metabolism , Endocannabinoids/metabolism , Macrophages , Oligodendroglia/metabolism
9.
Behav Brain Res ; 441: 114295, 2023 03 12.
Article in English | MEDLINE | ID: mdl-36641083

ABSTRACT

Major depressive disorder (MDD) is a chronic, recurring, and potentially life-threatening illness, which affects over 300 million people worldwide. MDD affects not only the emotional and social domains but also cognition. However, the currently available treatments targeting cognitive deficits in MDD are limited. Minocycline, an antibiotic with anti-inflammatory properties recently identified as a potential antidepressant, has been shown to attenuate learning and memory deficits in animal models of cognitive impairment. Here, we explored whether minocycline recovers the deficits in cognition in a mouse model of depression. C57BL6/J adult male mice were exposed to two weeks of chronic unpredictable mild stress to induce a depressive-like phenotype. Immediately afterward, mice received either vehicle or minocycline for three weeks in standard housing conditions. We measured anhedonia as a depressive-like response, and place learning to assess cognitive abilities. We also recorded long-term potentiation (LTP) as an index of hippocampal functional plasticity and ran immunohistochemical assays to assess microglial proportion and morphology. After one week of treatment, cognitive performance in the place learning test was significantly improved by minocycline, as treated mice displayed a higher number of correct responses when learning novel spatial configurations. Accordingly, minocycline-treated mice displayed higher LTP compared to controls. However, after three weeks of treatment, no difference between treated and control animals was found for behavior, neural plasticity, and microglial properties, suggesting that minocycline has a fast but short effect on cognition, without lasting effects on microglia. These findings together support the usefulness of minocycline as a potential treatment for cognitive impairment associated with MDD.


Subject(s)
Cognition Disorders , Depressive Disorder, Major , Mice , Animals , Male , Minocycline/pharmacology , Depressive Disorder, Major/drug therapy , Anti-Bacterial Agents/pharmacology , Cognition , Hippocampus
10.
Cells ; 11(9)2022 05 05.
Article in English | MEDLINE | ID: mdl-35563859

ABSTRACT

Cognitive deficits strongly affect the quality of life of patients with multiple sclerosis (MS). However, no cognitive MS biomarkers are currently available. Extracellular vesicles (EVs) contain markers of parental cells and are able to pass from the brain into blood, representing a source of disease biomarkers. The aim of this study was to investigate whether small non-coding microRNAs (miRNAs) targeting synaptic genes and packaged in plasma EVs may reflect cognitive deficits in MS patients. Total EVs were precipitated by Exoquick from the plasma of twenty-six cognitively preserved (CP) and twenty-three cognitively impaired (CI) MS patients belonging to two independent cohorts. Myeloid EVs were extracted by affinity capture from total EVs using Isolectin B4 (IB4). Fourteen miRNAs targeting synaptic genes were selected and measured by RT-PCR in both total and myeloid EVs. Myeloid EVs from CI patients expressed higher levels of miR-150-5p and lower levels of let-7b-5p compared to CP patients. Stratification for progressive MS (PMS) and relapsing-remitting MS (RRMS) and correlation with clinical parameters suggested that these alterations might be attributable to cognitive deficits rather than disease progression. This study identifies miR-150-5p and let-7b-5p packaged in blood myeloid EVs as possible biomarkers for cognitive deficits in MS.


Subject(s)
Extracellular Vesicles , MicroRNAs , Multiple Sclerosis , Biomarkers , Cognition , Extracellular Vesicles/genetics , Humans , MicroRNAs/genetics , Multiple Sclerosis/genetics , Quality of Life
11.
Behav Brain Res ; 408: 113256, 2021 06 25.
Article in English | MEDLINE | ID: mdl-33775780

ABSTRACT

Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder. It has been recently proposed that these drugs, by enhancing neural plasticity, amplify the influences of the living conditions on mood. Consequently, SSRI outcome depends on the quality of the environment, improving symptomatology mainly in individuals living in favorable conditions. In adverse conditions, drugs with a different mechanism of action might have higher efficacy. The antibiotic minocycline, with neuroprotective and anti-inflammatory properties, has been recently proposed as a novel potential antidepressant treatment. To explore the drug-by-environment interaction, we compared the effects on depressive-like behavior and neural plasticity of the SSRI fluoxetine and minocycline in enriched and stressful conditions. We first exposed C57BL/6 adult female mice to 14 days of chronic unpredictable mild stress to induce a depressive-like profile. Afterward, mice received vehicle, fluoxetine, or minocycline for 21 days, while exposed to either enriched or stressful conditions. During the first five days, fluoxetine led to an improvement in enrichment but not in stress. By contrast, minocycline led to an improvement in both conditions. After 21 days, all groups showed a significant improvement in enrichment while fluoxetine worsened the depressive like behavior in stress. The effects of the drugs on neural plasticity, measured as long-term potentiation, were also environment-dependent. Overall, we show that the environment affects fluoxetine but not minocycline outcome, indicating that the latter represents a potential alternative to SSRIs to treat depressed patients living in adverse conditions. From a translation perspective, our finding call for considering the drug-by-environment interaction to select the most effective pharmacological treatment.


Subject(s)
Antidepressive Agents/pharmacology , Behavior, Animal , Depression/drug therapy , Depression/etiology , Environment , Fluoxetine/pharmacology , Minocycline/pharmacology , Neuronal Plasticity/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Stress, Psychological/complications , Animals , Behavior, Animal/drug effects , Behavior, Animal/physiology , Disease Models, Animal , Female , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL