Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
1.
Cytokine ; 166: 156189, 2023 06.
Article in English | MEDLINE | ID: mdl-37004469

ABSTRACT

Controlling systemic proinflammatory and prooxidant effectors is essential for mitigating cardiovascular risk and mortality in patients with end-stage renal disease (ESRD). However, monitoring these processes is still challenging due to the high uncertainty about their determinants and predictors. Thus, we investigated the relationship between advanced glycosylation end products (AGE), proinflammatory and prooxidant effectors in ESRD patients undergoing hemodialysis (HD). In addition to nutritional profile and dialysis efficiency, AGE, cytokines, chemokines, C-reactive protein (CRP), total (TAC) and non-protein (npAC) antioxidant capacity, lipid and protein oxidation were analyzed in blood samples from 43 HD patients. AGE, CRP, cytokines, chemokines, protein carbonyl (PCn), and malondialdehyde (MDA) were upregulated, while TAC and npAC were down-regulated in HD patients compared to heath subjects. Dialysis efficiency, TAC and npAC were reduced, while leucocytes counting, pre- and post-HD urea, TNF, IL-6, IL-10, CCL-2, MIP-1ß, PCn, and MDA were increased in patients with higher AGE accumulation compared to those with lower AGE levels. Serum levels of CRP, protein carbonyl, malondialdehyde, and all cytokines and chemokines analyzed were correlated with AGE circulating levels for patients with higher AGE accumulation. AGE was inversely correlated with IL-10, TAC and npAC in patients with higher AGE accumulation. AGE exhibited predictive value (determination coefficient) to explain CRP, cytokines, chemokines, PCN, MDA, TAC and npAC variability in patients with higher AGE levels. Taken together, our findings provide evidence that AGE accumulation is associated with important proinflammatory and prooxidant effectors in patients with ESRD undergoing hemodialysis. Thus, AGE monitoring may be relevant to predict systemic inflammatory stress and the balance between oxidant and antioxidant status in these patients.


Subject(s)
Interleukin-10 , Kidney Failure, Chronic , Humans , Interleukin-10/metabolism , Antioxidants/metabolism , Reactive Oxygen Species , Glycosylation , Oxidative Stress , Renal Dialysis/adverse effects , C-Reactive Protein/metabolism , Cytokines/metabolism , Glycation End Products, Advanced/metabolism , Malondialdehyde
2.
Parasitology ; : 1-14, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35346411

ABSTRACT

From a systematic review framework, we assessed the preclinical evidence on the effectiveness of drug combinations for visceral leishmaniasis (VL) treatment. Research protocol was based on the PRISMA guideline. Research records were identified from Medline, Scopus and Web of Science. Animal models, infection and treatment protocols, parasitological and immunological outcomes were analysed. The SYRCLE's (SYstematic Review Center for Laboratory Animal Experimentation) toll was used to evaluate the risk of bias in all studies reviewed. Fourteen papers using mice, hamster and dogs were identified. Leishmania donovani was frequently used to induce VL, which was treated with 23 drugs in 40 different combinations. Most combinations allowed to reduce the effective dose, cost and time of treatment, in addition to improving the parasitological control of Leishmania spp. The benefits achieved from drug combinations were associated with an increased drug's half-life, direct parasitic toxicity and improved immune defences in infected hosts. Selection, performance and detection bias were the main limitations identified. Current evidence indicates that combination chemotherapy, especially those based on classical drugs (miltefosine, amphotericin B antimony-based compounds) and new drugs (CAL-101, PAM3Cys, tufisin and DB766), develops additive or synergistic interactions, which trigger trypanocidal and immunomodulatory effects associated with reduced parasite load, organ damage and better cure rates in VL.

3.
Ecotoxicol Environ Saf ; 208: 111601, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33396121

ABSTRACT

Atrazine (ATZ) is among the most widely used herbicides in the world, and yet it has a potential to contaminate aquatic environments due to pesticide leaching from agricultural areas. In the Neotropical region, studies about the effects of this herbicide in native aquatic wildlife is scarce.Our study aimed at investigating the effects of a 30-day exposure to a commercial atrazine formulation on oxidative stress parameters, histopathology in testis and liver, and hormone levels in males and female of yellow-tailed tetra fish (Astyanax altiparanae). Adults were exposed to low but environmentally relevant concentrations of atrazine as follows: 0 (CTL-control), 0.5 (ATZ0.5), 1 (ATZ1), 2 (ATZ2) and 10 (ATZ10) µg/L. Our results showed decreased GST activity in gills in all groups of exposed animals and increased CAT activity in gills from the ATZ10 group. In the liver, there was an increase in lipid peroxidation in fish from ATZ1 and ATZ2 groups. Histological analysis of the liver showed increased percentage of sinusoid capillaries in ATZ2 fish, increased vascular congestion in ATZ1 and increased leukocyte infiltration in the ATZ10 group. Hepatocyte diameter analysis revealed a decrease in cell size in all groups exposed to ATZ, and a decrease in hepatocyte nucleus diameter in ATZ1, ATZ2 and ATZ10 groups. Endocrine parameters did not show significant changes following ATZ exposure, although an increase of triiodothyronine/thyroxine (T3/T4) ratio was observed in ATZ2 fish. Our results provide evidence that even low, environmentally relevant concentrations of ATZ produced oxidative damage and histological alterations in adult yellow-tailed tetra.


Subject(s)
Atrazine/toxicity , Characidae/metabolism , Herbicides/toxicity , Oxidative Stress/drug effects , Water Pollutants, Chemical/toxicity , Animals , Atrazine/metabolism , Dose-Response Relationship, Drug , Female , Gills/drug effects , Gills/metabolism , Herbicides/metabolism , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/metabolism , Liver/pathology , Male , Testis/drug effects , Testis/metabolism , Testis/pathology , Water Pollutants, Chemical/metabolism
4.
Pharmacol Res ; 158: 104907, 2020 08.
Article in English | MEDLINE | ID: mdl-32416214

ABSTRACT

Phenothiazines inhibit major antioxidant defense mechanisms in trypanosomatids and exhibit potent cytotoxic effects in vitro. However, the relevance of these drugs in the treatment of Trypanosoma cruzi-induced acute myocarditis is poorly explored, especially in combination with reference trypanocidal drugs. Thus, we compared the antiparasitic and cardioprotective potential of thioridazine (TDZ) and benznidazole (Bz) administered in monotherapy and combined in a murine model of T. cruzi-induced acute myocarditis. Female mice were randomized into six groups: (i) uninfected untreated, (ii) infected untreated, or infected treated with (iii) Bz (100 mg/kg), (iv) TDZ (80 mg/kg), (v) Bz (100 mg/kg) + TDZ (80 mg/kg), or (vi) Bz (50 mg/kg) + TDZ (80 mg/kg). Infected animals were inoculated with 2000 T. cruzi trypomastigotes and treated by gavage for 20 days. Animals that received TDZ alone presented the highest levels of parasitemia, parasitic load and anti-T. cruzi immunoglobulin G titers; cardiac upregulation of N-acetyl-ß-D-glucosaminidase activity, nitric oxide, malondialdehyde and cytokines (IFN-γ, TNF-α, IL-10 and IL-17); as well as microstructural damage compared to the other groups (p < 0.05). These parameters were reduced in groups receiving Bz monotherapy compared to the other groups (p < 0.05). The combination of TDZ and Bz attenuated the response to treatment, worsening parasitological control, oxidative heart damage and myocarditis compared to the group treated with Bz alone (p < 0.05). Our results indicate that when administered alone, TDZ potentiated the pathological outcomes in animals infected with T. cruzi. Moreover, TDZ attenuated the antiparasitic effect of Bz when administered together, impairing parasitological control, potentiating inflammation, molecular oxidation and pathological microstructural remodeling of the heart. Thus, our findings indicate that TDZ acts as a pharmacological risk factor and Bz-based monotherapy remains a better cardioprotective drug against Trypanosoma cruzi-induced acute myocarditis.


Subject(s)
Antiprotozoal Agents/administration & dosage , Chagas Cardiomyopathy/drug therapy , Myocarditis/drug therapy , Nitroimidazoles/administration & dosage , Phenothiazines/administration & dosage , Trypanocidal Agents/administration & dosage , Animals , Chagas Cardiomyopathy/pathology , Chagas Disease/drug therapy , Chagas Disease/pathology , Drug Therapy, Combination , Female , Mice , Myocarditis/parasitology , Myocarditis/pathology , Trypanosoma cruzi/drug effects
5.
Parasitology ; 146(2): 142-160, 2019 02.
Article in English | MEDLINE | ID: mdl-30070181

ABSTRACT

American trypanosomiasis is a neglected tropical disease whose spectrum has not been quite understood, including the impact of Trypanosoma cruzi infection on the haematological parameters of different vertebrate hosts. Thus, this study was designed to compare the pattern of haematological changes induced by T. cruzi infection in order to identify possible species-specific differences among taxons. We also aimed at evaluating the use of this parameter as a tool for diagnosis during the acute phase, when symptoms are usually masked. For this purpose, we performed a systematic search on PubMed and Scopus databases to retrieve original studies published until August 2016. Thirty-one studies were selected using Prisma strategy, which were then submitted to data extraction and methodological bias analysis. Half of the studies showed that the number of erythrogram decreased in infected animals, indicating anaemia. In 68.2% of the studies, the total amount of leukogram values increased, suggesting infection. The main methodological limitations were insufficient information for T. cruzi strains identification, inoculation routes and parasitological characterization. Most of the mammalian species analysed showed the same pattern of haematological changes following T. cruzi infection, indicating that haematological parameters might direct the diagnosis of Chagas disease in the initial phase.


Subject(s)
Chagas Disease/veterinary , Animals , Animals, Domestic , Animals, Wild , Chagas Disease/blood , Disease Models, Animal
6.
Parasitology ; 146(7): 914-927, 2019 06.
Article in English | MEDLINE | ID: mdl-30782223

ABSTRACT

Although leucocytes are targets of renin-angiotensin system (RAS) effector molecules and RAS-modulating drugs exert immunomodulatory effects, their impact on Trypanosoma cruzi infection remains poorly understood. By using the framework of a systematic review, we integrated the preclinical and clinical evidence to investigate the relevance of angiotensin-inhibiting drugs on T. cruzi infections. From a comprehensive and structured search in biomedical databases, only original studies were analysed. In preclinical and clinical studies, captopril, enalapril and losartan were RAS-modulating drugs used. The main in vitro findings indicated that these drugs increased parasite uptake per host cells, IL-12 expression by infected dendritic cells and IFN-γ by T lymphocytes, in addition to attenuating IL-10 and IL-17 production by CD8 + T cells. In animal models, reduced parasitaemia, tissue parasitism, leucocytes infiltration and mortality were often observed in T. cruzi-infected animals receiving RAS-modulating drugs. In patients with Chagas' disease, these drugs exerted a controversial impact on cytokine and hormone levels, and a limited effect on cardiovascular function. Considering a detailed evaluation of reporting and methodological quality, the current preclinical and clinical evidence is at high risk of bias, and we hope that our critical analysis will be useful in mitigating the risk of bias in further studies.


Subject(s)
Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Angiotensins/antagonists & inhibitors , Chagas Disease/drug therapy , Animals , CD8-Positive T-Lymphocytes/immunology , Captopril/therapeutic use , Chagas Cardiomyopathy/drug therapy , Chagas Disease/immunology , Clinical Studies as Topic , Cytokines/immunology , Drug Evaluation, Preclinical , Enalapril/therapeutic use , Humans , Losartan/therapeutic use , Mice , Trypanosoma cruzi/drug effects
7.
Parasitology ; 146(13): 1655-1664, 2019 11.
Article in English | MEDLINE | ID: mdl-31362797

ABSTRACT

Considering a potential exercise-drug interaction, we investigated whether exercise training could improve the efficacy of specific antiparasitic chemotherapy in a rodent model of Chagas disease. Wistar rats were randomized into five groups: sedentary and uninfected (CT); sedentary and infected (SI); sedentary, infected and treated (SIT); trained and infected (TI); trained, infected and treated (TIT). After 9-weeks running training, the animals were infected with T. cruzi and followed up for 4 weeks, receiving 100 mg kg-1 day-1 benznidazole. No evidence of myocarditis was observed in CT animals. TI animals exhibited reduced parasitemia, myocarditis, and reactive tissue damage compared to SI animals, in addition to increased IFN-γ, IL-4, IL-10, heart non-protein antioxidant (NPA) levels and glutathione-s transferase activity (P < 0.05). The CT, SIT and TIT groups presented similar reductions in parasitemia, cytokines (IFN-γ, TNF-α, IL-4, IL-10, IL-17 and MCP-1), inflammatory infiltrate, oxidative heart damage and antioxidant enzymes activity compared to SI and TI animals, as well as reduced heart microstructural remodeling (P < 0.05). By modulating heart inflammation and redox metabolism, exercise training exerts a protective effect against T. cruzi infection in rats. However, the antiparasitic and cardioprotective effects of benznidazole chemotherapy are more pronounced, determining similar endpoints in sedentary and trained T. cruzi-infected rats.


Subject(s)
Antiparasitic Agents/therapeutic use , Cardiotonic Agents/therapeutic use , Chagas Disease/drug therapy , Nitroimidazoles/therapeutic use , Physical Conditioning, Animal , Animals , Chagas Disease/physiopathology , Cytokines/immunology , Disease Models, Animal , Drug Administration Schedule , Heart/physiopathology , Male , Myocarditis , Parasitemia/drug therapy , Rats , Rats, Wistar , Running , Trypanosoma cruzi/drug effects
8.
Reprod Fertil Dev ; 30(5): 681-688, 2018 May.
Article in English | MEDLINE | ID: mdl-29136400

ABSTRACT

Large amounts of calcium are required during pregnancy and lactation to support fetal and neonatal bone growth and calcification. An inadequate supply of calcium during these stages can lead to unsuccessful reproduction or impaired offspring fitness. During reproduction, female mammals undergo numerous physiological changes, including adaptations to allow an adequate supply of calcium. The lack of quantitative studies analysing these physiological changes from a comparative perspective limits our ability to explain and understand these adaptations. Herein, we present our meta-analysis of studies reporting changes in bone turnover and calcium homeostasis during pregnancy and lactation in 14 species of mammals. Our meta-analysis of 60 studies showed that all species have a similar pattern of physiological changes during pregnancy and lactation, which include: (1) decreased serum calcium concentrations; (2) bone tissue loss; (3) decreased serum calcitonin and parathyroid hormone concentrations; and (4) increased serum calcitriol concentration, regardless of changes in parathyroid hormone concentrations. In addition, we found a negative relationship between: (1) serum calcium concentrations and the number of teats; and (2) serum parathyroid hormone concentrations and litter mass.


Subject(s)
Bone Remodeling/physiology , Calcium/blood , Homeostasis/physiology , Lactation/physiology , Animals , Calcitonin/blood , Calcitriol/blood , Female , Humans , Mammals , Parathyroid Hormone/blood , Pregnancy
9.
Parasitology ; 144(10): 1275-1287, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28578742

ABSTRACT

Chagas disease and sleeping sickness are neglected tropical diseases closely related to poverty, for which the development of plant-derived treatments has not been a promising prospect. Thus, we systematicaly review the preclinical in vivo evidence on the applicability of plant-based products in the treatment of Trypanosoma cruzi and Trypanosoma brucei infections. Characteristics such as disease models, treatments, toxicological safety and methodological bias were analysed. We recovered 66 full text articles from 16 countries investigating 91 plant species. The disease models and treatments were highly variable. Most studies used native (n = 36, 54·54%) or exotic (n = 30, 45·46%) plants with ethnodirected indication (n = 45, 68·18%) for trypanosomiasis treatment. Complete phytochemical screening and toxicity assays were reported in only 15 (22·73%) and 32 (48·49%) studies, respectively. The currently available preclinical evidence is at high risk of bias. The absence of or incomplete characterization of animal models, treatment protocols, and phytochemical/toxicity analyses impaired the internal validity of the individual studies. Contradictory results of a same plant species compromise the external validity of the evidence, making it difficult determine the effectiveness, safety and biotechnological potential of plant-derived products in the development of new anti-infective agents to treat T. cruzi and T. brucei infections.


Subject(s)
Drug Evaluation, Preclinical , Plant Extracts/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Trypanosoma cruzi/drug effects , Animals , Cattle , Chagas Disease/drug therapy , Neglected Diseases/drug therapy , Plant Extracts/therapeutic use , Trypanocidal Agents/therapeutic use , Trypanosomiasis, African/drug therapy , Trypanosomiasis, Bovine/drug therapy
10.
Parasitology ; 144(7): 904-916, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28134069

ABSTRACT

We compared the relevance of ibuprofen, vitamins C and E to control oxidative/nitrosative stress and heart disease in mice infected by Trypanosoma cruzi. Swiss mice were randomized into five groups: control, uninfected; infected without treatment; and infected treated with vitamins C, E or ibuprofen. Animals were inoculated with 2000 trypomastigote forms of T. cruzi. After 20 days, infected mice presented reduced vitamin C and E tissue levels, high cytokines (interferon gamma, tumour necrosis factor-α, interleukin 10 and chemokine ligand 2), prostaglandin F2α (PGF2α ) and nitric oxide (NO) cardiac production, intense myocarditis and reactive tissue damage, which was directly correlated with the intensity of the inflammatory infiltrate and the degree of pathological cardiac remodelling. Vitamins C and E supplementation were irrelevant to counteract reactive tissue damage and myocarditis in infected animals. Conversely, ibuprofen reduced tissue levels of cytokines, PGF2α and NO, as well as lipid and protein oxidation, antioxidant enzyme activity and the cardiac damage, without interfering with heart parasitism. Our results do not support the applicability of vitamin C and E supplementation in the management of acute Chagas cardiomyopathy. By controlling the inflammatory infiltrate, anti-inflammatory-based therapy proved to be a more rational strategy than a direct antioxidant therapy in attenuating oxidative/nitrosative stress and cardiac damage.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antioxidants/therapeutic use , Chagas Disease/drug therapy , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antioxidants/pharmacology , Chagas Disease/immunology , Chagas Disease/parasitology , Disease Models, Animal , Male , Mice , Nitrosative Stress , Trypanosoma cruzi/drug effects
11.
Microsc Microanal ; 23(5): 989-1001, 2017 10.
Article in English | MEDLINE | ID: mdl-28743325

ABSTRACT

By using an experimental model of dexamethasone-induced osteoporosis we investigated the effects of different therapeutic schemes combining sodium alendronate (SA) and simvastatin on bone mineral and protein composition, microstructural and mechanical remodeling. Wistar rats were randomized into eight groups: G1: non-osteoporotic; G2: osteoporotic; G3, G4, and G5: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively); G6, G7, and G8: osteoporotic+SA (0.2, 0.4, and 0.8 mg/kg, respectively)+simvastatin (0.4, 0.6, and 1 mg/kg, respectively). Osteoporosis was induced by dexamethasone (7 mg/kg, i.m.) once a week for 5 weeks. All treatments were administered for 8 weeks. Dexamethasone increased serum levels of alkaline phosphatase, calcium, phosphorus, and urea, especially in non-treated animals, which showed severe osteoporosis. Dexamethasone also induced bone microstructural fragility and reduced mechanical resistance, which were associated with a marked depletion in mineral mass, collagenous and non-collagenous protein levels in cortical and cancellous bone. Although SA has attenuated osteoporosis severity, the effectiveness of drug therapy was enhanced combining alendronate and simvastatin. The restoration in serum parameters, organic and inorganic bone mass, and mechanical behavior showed a dose-dependent effect that was potentially related to the complementary mechanisms by which each drug acts to induce bone anabolism, accelerating tissue repair.


Subject(s)
Alendronate/therapeutic use , Bone Density Conservation Agents/therapeutic use , Bone Density/drug effects , Bone Remodeling/drug effects , Bone Resorption/prevention & control , Osteoporosis/drug therapy , Simvastatin/therapeutic use , Alkaline Phosphatase/blood , Animals , Bone and Bones/physiology , Calcium/blood , Dexamethasone/toxicity , Drug Synergism , Osteoporosis/chemically induced , Phosphorus/blood , Rats , Rats, Wistar , Urea/blood
12.
Int J Exp Pathol ; 97(2): 114-24, 2016 04.
Article in English | MEDLINE | ID: mdl-27277193

ABSTRACT

This study investigated the pathological morphofunctional adaptations related to the imbalance of exercise tolerance triggered by paraquat (PQ) exposure in rats. The rats were randomized into four groups with eight animals each: (a) SAL (control): 0.5 ml of 0.9% NaCl solution; (b) PQ10: PQ 10 mg/kg; (c) PQ20: PQ 20 mg/kg; and (d) PQ30: PQ 30 mg/kg. Each group received a single injection of PQ. After 72 hours, the animals were subjected to an incremental aerobic running test until fatigue in order to determine exercise tolerance, blood glucose and lactate levels. After the next 24 h, lung, liver and skeletal muscle were collected for biometric, biochemical and morphological analyses. The animals exposed to PQ exhibited a significant anticipation of anaerobic metabolism during the incremental aerobic running test, a reduction in exercise tolerance and blood glucose levels as well as increased blood lactate levels during exercise compared to control animals. PQ exposure increased serum transaminase levels and reduced the glycogen contents in liver tissue and skeletal muscles. In the lung, the liver and the skeletal muscle, PQ exposure also increased the contents of malondialdehyde, protein carbonyl, 8-hydroxy-2'-deoxyguanosine, superoxide dismutase and catalase, as well as a structural remodelling compared to the control group. All these changes were dose-dependent. Reduced exercise tolerance after PQ exposure was potentially influenced by pathological remodelling of multiple organs, in which glycogen depletion in the liver and skeletal muscle and the imbalance of glucose metabolism coexist with the induction of lipid, protein and DNA oxidation, a destructive process not counteracted by the upregulation of endogenous antioxidant enzymes.


Subject(s)
Exercise Tolerance/drug effects , Herbicides/administration & dosage , Multiple Organ Failure/chemically induced , Oxidative Stress/drug effects , Paraquat/administration & dosage , Animals , Antioxidants/metabolism , Blood Glucose/metabolism , Dose-Response Relationship, Drug , Exercise Tolerance/physiology , Herbicides/toxicity , Lactic Acid/blood , Liver/drug effects , Liver/metabolism , Liver/pathology , Lung/drug effects , Lung/metabolism , Lung/pathology , Male , Multiple Organ Failure/physiopathology , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Oxidative Stress/physiology , Paraquat/toxicity , Random Allocation , Rats, Wistar
13.
Microsc Microanal ; 21(6): 1482-1490, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26538416

ABSTRACT

Skin samples were used to compare microscopy methods used to quantify collagen with potential applicability to resolve time-dependent collagen deposition during skin wound healing in rats. Skin wounds by secondary intention were made in rats and tissue fragments were collected every 7 days for 21 days. Collagen content determined by biochemical analysis was compared with collagen measured by point counting (PC) on histological skin sections stained by Gomori's trichrome method (Trichrome/PC), Sirius red under polarized light (PL) microscopy (Sirius red/PL-PC), and computational color segmentation (CS) applied to sections stained with Sirius red (Sirius red/PL-CS). All microscopy methods investigated resolved the time-dependent dynamics of collagen deposition in scar tissue during skin wound healing in rats. Collagen content measured by Sirius red/PL-PC and Sirius red/PL-CS was significantly lower when compared with Trichrome/PC. The Trichrome/PC method provided overestimated values of collagen compared with biochemical analysis. In the early stages of wound healing, which shows high production of noncollagenous molecules, Sirius red/PL-CS and Sirius red/PL-PC methods were more suitable for quantification of collagen fibers. Trichrome staining did not allow clear separation between collagenous and noncollagenous elements in skin samples, introducing a marked bias in collagen quantification.

14.
Int J Exp Pathol ; 95(2): 138-46, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24354418

ABSTRACT

This study investigates the influence of gallium-arsenide (GaAs) laser photobiostimulation applied with different energy densities on skin wound healing by secondary intention in rats. Three circular wounds, 10 mm in diameter, were made on the dorsolateral region of 21 Wistar rats weighting 282.12 ± 36.08 g. The animals were equally randomized into three groups: Group SAL, saline solution 0.9%; Group L3, laser GaAs 3 J/cm(2); Group L30, laser GaAs 30 J/cm(2). Analyses of cells, blood vessels, collagen and elastic fibres, glycosaminoglycans and wound contraction were performed on the scar tissue from different wounds every 7 days for 21 days. On day 7, 14 and 21, L3 and L30 showed higher collagen and glycosaminoglycan levels compared to SAL (P < 0.05). At day 21, elastic fibres were predominant in L3 and L30 compared to SAL (P < 0.05). Type-III collagen fibres were predominant at day 7 in both groups. There was gradual reduction in these fibres and accumulation of type-I collagen over time, especially in L3 and L30 compared with SAL. Elevated density of blood vessels was seen in L30 on days 7 and 14 compared to the other groups (P < 0.05). On these same days, there was higher tissue cellularity in L3 compared with SAL (P < 0.05). The progression of wound closure during all time points investigated was higher in the L30 group (P < 0.05). Both energy densities investigated increased the tissue cellularity, vascular density, collagen and elastic fibres, and glycosaminoglycan synthesis, with the greater benefits for wound closure being found at the density of 30 J/cm(2).


Subject(s)
Low-Level Light Therapy/methods , Skin/injuries , Wound Healing/physiology , Wounds and Injuries/radiotherapy , Animals , Collagen/metabolism , Male , Rats , Rats, Wistar , Skin/metabolism , Wounds and Injuries/metabolism
15.
Cells Tissues Organs ; 199(4): 266-77, 2014.
Article in English | MEDLINE | ID: mdl-25300223

ABSTRACT

The technological development of pharmaceutical products based on plant extracts is currently responsible for a large number of recent innovations in healthcare. The objective of this study was to develop and investigate the effect and potential applicability of an ointment-based Bathysa cuspidata extract (BCE) for the management of skin wounds in rats. Three skin wounds of 12 mm in diameter were made on the backs of the animals, which were randomized into 4 groups according to the application received, i.e. the SAL group: 0.9% saline solution, the LAN group: lanolin, the BCE 2.5% group: 2.5% BCE emulsified in lanolin and the BCE 5% group: 5% BCE emulsified in lanolin. The applications were made daily over 21 days, and every 7 days tissue from different wounds was removed. On days 7, 14 and 21, the BCE 2.5% and BCE 5% groups showed the best results in relation to wound closure, and a higher proportion (in length, density and volume) of blood vessels and fibroblasts compared to the other groups. On days 7 and 14, there was a significant increase in the number of mast cells in these 2 groups when compared to the SAL and LAN groups. On day 21, they also had a higher proportion of collagen I than collagen III. B. cuspidata in an ointment base was effective in stimulating tissue cellularity, mast cell recruitment, neoangiogenesis, synthesis and maturation of collagen, epidermal thickness and surface area in scar tissue. These events were potentially related to the best quality and speed for skin regeneration in the rats treated with the BCE ointment.


Subject(s)
Collagen/metabolism , Guided Tissue Regeneration/methods , Phytotherapy/methods , Plant Extracts/therapeutic use , Skin/injuries , Wound Healing/drug effects , Animals , Plant Extracts/pharmacology , Rats , Rats, Wistar , Time Factors
16.
Life Sci ; 338: 122408, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38181852

ABSTRACT

Anabolic-androgenic steroids (AAS) abuse is often associated with metabolic disorders and infertility. However, the current evidence on AAS-induced reproductive toxicity is mainly based on male studies. Thus, AAS repercussions on female reproductive capacity remain poorly understood, despite scarce evidence that fertility determinants may be more severely impaired in females than males exposed to these drugs. Accordingly, this study used an integrated framework to investigate the impact of different testosterone 17ß-cyclopentylpropionate (TC) doses on pain sensitivity, aggressiveness, anxiety, sexual behavior, ovarian, oviductal, uterine and reproductive morphofunctional and molecular outcomes. These parameters were used to explore the reproductive capacity in female mice exposed to this synthetic testosterone ester. The animals were untreated or intraperitoneally treated with 5, 10 and 20 mg/kg TC every 48 h for 12 weeks. Our findings indicated that testosterone was upregulated while the hormones luteinizing, follicle-stimulating, estrogen and progesterone were down-regulated by TC. This AAS also exerted deleterious effects on anxiety, aggressivity, nociception, exploratory and sexual behavior in female mice. Concurrently, TC attenuated ovarian follicle maturation, interrupted the estrous cycle, induced oviductal and uterine hypotrophy. Estrous cyclicity was reestablished 60 days after AAS treatment. However, TC-treated mice still exhibited impaired reproductive capacity, a disturbance potentially related to deficiency in folliculogenesis, sex hormones production, and endometrial receptivity mediate by ER-α, PR, HOXA-10 and LIF down-regulation. Taken together, our findings indicated that in addition to female behavior, reproductive organs microstructure and function are markedly impaired by TC in a dose-dependent manner, whose time-dependent reversibility remains to be clarified.


Subject(s)
Anabolic Agents , Male , Female , Mice , Animals , Anabolic Agents/pharmacology , Testosterone/pharmacology , Testosterone Congeners , Reproduction , Progesterone/pharmacology
17.
Int Immunopharmacol ; 127: 111353, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38086267

ABSTRACT

Schistosomiasis mansoni is a parasitic infection that causes enterohepatic morbidity associated with severe granulomatous inflammation triggered by parasite eggs. In this disease, granulomatous inflammation leads to intestinal erosion and environmental excretion of S. mansoni eggs from feces, an essential process for propagating the parasite and infecting host organisms. Metalloproteinases (MMP) are involved in S. mansoni-induced hepatic granulomatous inflammation and fibrosis. However, the relationship between MMP and collagen accumulation with the intestinal excretion of parasite eggs remains unclear. Thus, the present study investigated whether MMP inhibition is capable of modulating granulomatous inflammation, collagen accumulation and mechanical resistance to the point of influencing the dynamics between intestinal retention and excretion of S. mansoni eggs in infected mice. Our findings indicated that doxycycline (a potent MMP inhibitor) aggravates intestinal inflammation and subverts collagen dynamics in schistosomiasis. By attenuating MMP-2 and MMP-9 activity, this drug is capable of enhancing fibrosis and mechanical resistance of the intestinal wall, hindering S. mansoni eggs translocation. Although collagen content was not correlated with MMP activity, intestinal retention and fecal excretion of parasite eggs in untreated mice; these correlations were observed for doxycycline-treated animals. Thus, our study provides evidence that doxycycline is able to attenuate fecal elimination of S. mansoni eggs by inhibiting MMP-2 and MMP-9 activity, events potentially associated with excessive collagen accumulation, which increases intestinal mechanical resistance and hinders eggs translocation through the intestinal wall. Variations in intestinal collagen dynamics are relevant since they may represent changes in the environmental dispersion of S. mansoni eggs, bringing repercussions for schistosomiasis propagation.


Subject(s)
Schistosoma mansoni , Schistosomiasis , Animals , Mice , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Doxycycline/pharmacology , Doxycycline/therapeutic use , Inflammation/parasitology , Fibrosis , Collagen
18.
Cardiovasc Pathol ; 72: 107653, 2024 May 11.
Article in English | MEDLINE | ID: mdl-38740356

ABSTRACT

By uncoupling oxidative phosphorylation, 2,4-dinitrophenol (DNP) attenuates reactive oxygen species (ROS) biosynthesis, which are known to aggravate infectious myocarditis in Chagas disease. Thus, the impact of DNP-based chemotherapy on Trypanosoma cruzi-induced acute myocarditis was investigated. C56BL/6 mice uninfected and infected untreated and treated daily with 100 mg/kg benznidazole (Bz, reference drug), 5 and 10 mg/kg DNP by gavage for 11 days after confirmation of T. cruzi infection were investigated. Twenty-four hours ​after the last treatment, the animals were euthanized and the heart was collected for microstructural, immunological and biochemical analyses. T. cruzi inoculation induced systemic inflammation (e.g., cytokines and anti-T. cruzi IgG upregulation), cardiac infection (T. cruzi DNA), oxidative stress, inflammatory infiltrate and microstructural myocardial damage in untreated mice. DNP treatment aggravated heart infection and microstructural damage, which were markedly attenuated by Bz. DNP (10 mg/kg) was also effective in attenuating ROS (total ROS, H2O2, and O2-), nitric oxide (NO), lipid (malondialdehyde - MDA) and protein (protein carbonyl - PCn) oxidation, TNF, IFN-γ, IL-10, and MCP-1/CCL2, anti-T. cruzi IgG, cardiac troponin I levels, as well as inflammatory infiltrate and cardiac damage in T. cruzi-infected mice. Our findings indicate that DNP aggravated heart infection and microstructural cardiomyocytes damage in infected mice. These responses were related to the antioxidant and anti-inflammatory properties of DNP, which favors infection by weakening the pro-oxidant and pro-inflammatory protective mechanisms of the infected host. Conversely, Bz-induced cardioprotective effects combined effective anti-inflammatory and antiparasitic responses, which protect against heart infection, oxidative stress, and microstructural damage in Chagas disease.

19.
Int Immunopharmacol ; 128: 111467, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38211479

ABSTRACT

The adequate management of parasite co-infections represents a challenge that has not yet been overcome, especially considering that the pathological outcomes and responses to treatment are poorly understood. Thus, this study aimed to evaluate the impact of Schistosoma mansoni infection on the efficacy of benznidazole (BZN)-based chemotherapy in Trypanosoma cruzi co-infected mice. BALB/c mice were maintained uninfected or co-infected with S. mansoni and T. cruzi, and were untreated or treated with BZN. Body weight, mortality, parasitemia, cardiac parasitism, circulating cytokines (Th1/Th2/Th17); as well as heart, liver and intestine microstructure were analyzed. The parasitemia peak was five times higher and myocarditis was more severe in co-infected than T. cruzi-infected mice. After reaching peak, parasitemia was effectively controlled in co-infected animals. BZN successfully controlled parasitemia in both co-infected and T. cruzi-infected mice and improved body mass, cardiac parasitism, myocarditis and survival in co-infected mice. Co-infection dampened the typical cytokine response to either parasite, and BZN reduced anti-inflammatory cytokines in co-infected mice. Despite BZN normalizing splenomegaly and liver cellular infiltration, it exacerbated hepatomegaly in co-infected mice. Co-infection or BZN exerted no effect on hepatic granulomas, but increased pulmonary and intestinal granulomas. Marked granulomatous inflammation was identified in the small intestine of all schistosomiasis groups. Taken together, our findings indicate that BZN retains its therapeutic efficacy against T. cruzi infection even in the presence of S. mansoni co-infection, but with organ-specific repercussions, especially in the liver.


Subject(s)
Chagas Disease , Coinfection , Myocarditis , Nitroimidazoles , Schistosomiasis mansoni , Mice , Animals , Myocarditis/parasitology , Schistosoma mansoni , Parasitemia/drug therapy , Chagas Disease/drug therapy , Cytokines/therapeutic use , Granuloma
20.
Int Immunopharmacol ; 121: 110416, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37295025

ABSTRACT

AIMS: From well-delimited immunomodulatory, redox and antimicrobial properties; metronidazole and eugenol were used as structural platforms to assembly two new molecular hybrids (AD06 and AD07), whose therapeutic relevance was analyzed on T. cruzi infection in vitro and in vivo. METHODS: Non-infected, T. cruzi-infected H9c2 cardiomyocytes, and mice non-treated and treated with vehicle, benznidazole (Bz - reference drug), AD06 and AD07 were investigated. Parasitological, prooxidant, antioxidant, microstructural, immunological, and hepatic function markers were analyzed. RESULTS: Our findings indicated that in addition to having a direct antiparasitic effect on T. cruzi, metronidazole/eugenol hybrids (especially AD07) attenuated cellular parasitism, reactive species biosynthesis and oxidative stress in infected cardiomyocytes in vitro. Although AD06 and AD07 exerted no relevant impact on antioxidant enzymes activity (CAT, SOD, GR and GPx) in host cells, these drugs (especially AD07) attenuated trypanothione reductase activity in T. cruzi, which increased parasite's susceptibility to in vitro pro-oxidant challenge. AD06 and AD07 were well tolerated and do not determine humoral response suppression, mortality (100 % survival) or hepatotoxicity in mice, as indicated by transaminases plasma levels. AD07 also induced relevant in vivo antiparasitic and cardioprotective effects, attenuating parasitemia, cardiac parasite load and myocarditis in T. cruzi-infected mice. Although this cardioprotective response is potentially related to AD07 antiparasitic effect, a direct anti-inflammatory potential of this molecular hybrid cannot be ruled out. CONCLUSION: Taken together, our findings indicated that the new molecular hybrid AD07 stood out as a potentially relevant candidate for the development of new, safe and more effective drug regimens for T. cruzi infection treatment.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Mice , Animals , Metronidazole/pharmacology , Metronidazole/therapeutic use , Eugenol/pharmacology , Antioxidants/pharmacology , Chagas Disease/drug therapy , Myocytes, Cardiac , Antiparasitic Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL