Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 107
Filter
1.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Article in English | MEDLINE | ID: mdl-35303419

ABSTRACT

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Subject(s)
Gastrointestinal Microbiome , Inflammatory Bowel Diseases , Sialyltransferases/genetics , Animals , Homeostasis , Humans , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Mice , Mucus/metabolism , Sialyltransferases/metabolism , Symbiosis
2.
Cell ; 168(5): 830-842.e7, 2017 02 23.
Article in English | MEDLINE | ID: mdl-28235197

ABSTRACT

De novo copy number variants (dnCNVs) arising at multiple loci in a personal genome have usually been considered to reflect cancer somatic genomic instabilities. We describe a multiple dnCNV (MdnCNV) phenomenon in which individuals with genomic disorders carry five to ten constitutional dnCNVs. These CNVs originate from independent formation incidences, are predominantly tandem duplications or complex gains, exhibit breakpoint junction features reminiscent of replicative repair, and show increased de novo point mutations flanking the rearrangement junctions. The active CNV mutation shower appears to be restricted to a transient perizygotic period. We propose that a defect in the CNV formation process is responsible for the "CNV-mutator state," and this state is dampened after early embryogenesis. The constitutional MdnCNV phenomenon resembles chromosomal instability in various cancers. Investigations of this phenomenon may provide unique access to understanding genomic disorders, structural variant mutagenesis, human evolution, and cancer biology.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Genetic Diseases, Inborn/embryology , Genetic Diseases, Inborn/genetics , Genomic Instability , Mutation , Chromosome Breakpoints , Chromosome Duplication , DNA Replication , Embryonic Development , Female , Gametogenesis , Humans , Male
3.
Cell ; 157(3): 636-50, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24766809

ABSTRACT

CLP1 is a RNA kinase involved in tRNA splicing. Recently, CLP1 kinase-dead mice were shown to display a neuromuscular disorder with loss of motor neurons and muscle paralysis. Human genome analyses now identified a CLP1 homozygous missense mutation (p.R140H) in five unrelated families, leading to a loss of CLP1 interaction with the tRNA splicing endonuclease (TSEN) complex, largely reduced pre-tRNA cleavage activity, and accumulation of linear tRNA introns. The affected individuals develop severe motor-sensory defects, cortical dysgenesis, and microcephaly. Mice carrying kinase-dead CLP1 also displayed microcephaly and reduced cortical brain volume due to the enhanced cell death of neuronal progenitors that is associated with reduced numbers of cortical neurons. Our data elucidate a neurological syndrome defined by CLP1 mutations that impair tRNA splicing. Reduction of a founder mutation to homozygosity illustrates the importance of rare variations in disease and supports the clan genomics hypothesis.


Subject(s)
Central Nervous System Diseases/genetics , Mutation, Missense , Nuclear Proteins/metabolism , Peripheral Nervous System Diseases/genetics , Phosphotransferases/metabolism , RNA, Transfer/metabolism , Transcription Factors/metabolism , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Animals , Central Nervous System Diseases/pathology , Cerebrum/pathology , Child, Preschool , Endoribonucleases/metabolism , Female , Fibroblasts/metabolism , Humans , Infant , Male , Mice , Mice, Inbred CBA , Microcephaly/genetics , Peripheral Nervous System Diseases/pathology , RNA, Transfer/genetics , RNA-Binding Proteins
4.
Genome Res ; 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39358015

ABSTRACT

Fewer than half of individuals with a suspected Mendelian or monogenic condition receive a precise molecular diagnosis after comprehensive clinical genetic testing. Improvements in data quality and costs have heightened interest in using long-read sequencing (LRS) to streamline clinical genomic testing, but the absence of control datasets for variant filtering and prioritization has made tertiary analysis of LRS data challenging. To address this, the 1000 Genomes Project ONT Sequencing Consortium aims to generate LRS data from at least 800 of the 1000 Genomes Project samples. Our goal is to use LRS to identify a broader spectrum of variation so we may improve our understanding of normal patterns of human variation. Here, we present data from analysis of the first 100 samples, representing all 5 superpopulations and 19 subpopulations. These samples, sequenced to an average depth of coverage of 37x and sequence read N50 of 54 kbp, have high concordance with previous studies for identifying single nucleotide and indel variants outside of homopolymer regions. Using multiple structural variant (SV) callers, we identify an average of 24,543 high-confidence SVs per genome, including shared and private SVs likely to disrupt gene function as well as pathogenic expansions within disease-associated repeats that were not detected using short reads. Evaluation of methylation signatures revealed expected patterns at known imprinted loci, samples with skewed X-inactivation patterns, and novel differentially methylated regions. All raw sequencing data, processed data, and summary statistics are publicly available, providing a valuable resource for the clinical genetics community to discover pathogenic SVs.

5.
Nature ; 586(7831): 749-756, 2020 10.
Article in English | MEDLINE | ID: mdl-33087929

ABSTRACT

The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world1. Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6% have a frequency of less than 1%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97%) had at least one carrier with a LOF variant, and most genes (more than 69%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, including PIEZO1 on varicose veins, COL6A1 on corneal resistance, MEPE on bone density, and IQGAP2 and GMPR on blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenic BRCA1 and BRCA2 variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.


Subject(s)
Databases, Genetic , Exome Sequencing , Exome/genetics , Loss of Function Mutation/genetics , Phenotype , Aged , Bone Density/genetics , Collagen Type VI/genetics , Demography , Female , Genes, BRCA1 , Genes, BRCA2 , Genotype , Humans , Ion Channels/genetics , Male , Middle Aged , Neoplasms/genetics , Penetrance , Peptide Fragments/genetics , United Kingdom , Varicose Veins/genetics , ras GTPase-Activating Proteins/genetics
6.
Am J Hum Genet ; 109(12): 2095-2100, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36459976

ABSTRACT

The genotyping of millions of human samples has made it possible to evaluate variants across the human genome for their possible association with risks for numerous diseases and other traits by using genome-wide association studies (GWASs). The associations between phenotype and genotype found in GWASs make possible the construction of polygenic scores (PGSs), which aim to predict a trait or disease outcome in an individual on the basis of their genotype (in the disease case, the term polygenic risk score [PRS] is often used). PGSs have shown promise for studying the biology of complex traits and as a tool for evaluating individual disease risks in clinical settings. Although the quantity and quality of data to compute PGSs are increasing, challenges remain in the technical aspects of developing PGSs and in the ethical and social issues that might arise from their use. This ASHG Guidance emphasizes three major themes for researchers working with or interested in the application of PGSs in their own research: (1) developing diverse research cohorts; (2) fostering robustness in the development, application, and interpretation of PGSs; and (3) improving the communication of PGS results and their implications to broad audiences.


Subject(s)
Genome-Wide Association Study , Multifactorial Inheritance , Humans , Multifactorial Inheritance/genetics , Genetic Research , Genotype , Phenotype
7.
Am J Hum Genet ; 109(9): 1563-1571, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36055208

ABSTRACT

The vision of the American Society of Human Genetics (ASHG) is that people everywhere will realize the benefits of human genetics and genomics. Implicit in that vision is the importance of ensuring that the benefits of human genetics and genomics research are realized in ways that minimize harms and maximize benefits, a goal that can only be achieved through focused efforts to address health inequities and increase the representation of underrepresented communities in genetics and genomics research. This guidance is intended to advance community engagement as an approach that can be used across the research lifecycle. Community engagement uniquely offers researchers in human genetics and genomics an opportunity to pursue that vision successfully, including by addressing underrepresentation in genomics research.


Subject(s)
Genomics , Research Personnel , Humans , United States
8.
Am J Hum Genet ; 109(3): 518-532, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35108495

ABSTRACT

Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.


Subject(s)
Neurodevelopmental Disorders , Peripheral Nervous System Diseases , Animals , Axons/metabolism , Cell Adhesion/genetics , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Adhesion Molecules, Neuronal , Humans , Mice , Muscle Hypotonia/genetics , Muscle Hypotonia/metabolism , Muscle Spasticity/metabolism , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/metabolism , Zebrafish/genetics , Zebrafish/metabolism
9.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34102099

ABSTRACT

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Subject(s)
Adaptor Protein Complex 1/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics , Alleles , Animals , DNA Mutational Analysis , Female , HEK293 Cells , Humans , Male , Pedigree , Rats , Zebrafish/genetics
10.
Dermatology ; : 1-11, 2024 Oct 11.
Article in English | MEDLINE | ID: mdl-39396498

ABSTRACT

INTRODUCTION: Hidradenitis suppurativa (HS) is a prevalent and persistent inflammatory skin disorder, lacking a known cure or effective biomarkers for early diagnosis at present. The genetic determinants of HS have not been fully documented, but it is believed to result from a combination of genetic and environmental factors. METHODS: To identify relevant HS gene variants in sporadic HS patients, this study utilized longitudinal electronic health records (EHRs) and whole-exome sequencing. DNA exome sequencing data from 92,455 participant samples in the MyCode biobank, linked to Geisinger's EHR, were analyzed. This cohort included 1,092 HS cases and 91,363 healthy controls. The MyCode EHR has a median longitudinal follow-up of 15 years per participant, with an average of 87 clinical encounters, 687 laboratory tests, and 7 procedures. RESULTS: There were 1,092 (901 females and 191 males) participants aged 14-89 years (median 47 years) with HS (L73.2), indicating a 1.18% prevalence and accounting for a 4.7:1 female-to-male ratio among the individuals presenting for clinical care. γ-secretase complex, syndromic, and autoinflammatory gene variants were assessed. Potential pathogenic variants were identified among 66 individuals in the HS genes studied. Molecularly, the estimated HS variant prevalence was 1:1,400 in the cohort, 12.3% of variant carriers had HS diagnosis in EHR. CONCLUSIONS: Using longitudinal EHR data, genomic screening identified HS-associated gene variants in a defined group of sporadic HS patients to augment the clinical diagnosis, particularly in cases of ambiguity. Based on this study, the field of skin disorders can benefit from a personalized approach to HS diagnosis using large-scale sequencing.

11.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33674380

ABSTRACT

Interleukin (IL)-37, an antiinflammatory IL-1 family cytokine, is a key suppressor of innate immunity. IL-37 signaling requires the heterodimeric IL-18R1 and IL-1R8 receptor, which is abundantly expressed in the gastrointestinal tract. Here we report a 4-mo-old male from a consanguineous family with a homozygous loss-of-function IL37 mutation. The patient presented with persistent diarrhea and was found to have infantile inflammatory bowel disease (I-IBD). Patient cells showed increased intracellular IL-37 expression and increased proinflammatory cytokine production. In cell lines, mutant IL-37 was not stably expressed or properly secreted and was thus unable to functionally suppress proinflammatory cytokine expression. Furthermore, induced pluripotent stem cell-derived macrophages from the patient revealed an activated macrophage phenotype, which is more prone to lipopolysaccharide and IL-1ß stimulation, resulting in hyperinflammatory tumor necrosis factor production. Insights from this patient will not only shed light on monogenic contributions of I-IBD but may also reveal the significance of the IL-18 and IL-37 axis in colonic homeostasis.


Subject(s)
Gene Expression Regulation/immunology , Inflammatory Bowel Diseases , Interleukin-1 , Loss of Function Mutation , Macrophage Activation/immunology , Macrophages/immunology , Child, Preschool , Female , Humans , Induced Pluripotent Stem Cells/immunology , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/immunology , Interleukin-1/genetics , Interleukin-1/immunology , Interleukin-18/genetics , Interleukin-18/immunology , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Macrophage Activation/genetics , Male
12.
Hum Mol Genet ; 29(21): 3516-3531, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33105479

ABSTRACT

Neurodevelopmental disorder with microcephaly, hypotonia and variable brain anomalies (NMIHBA) is an autosomal recessive neurodevelopmental and neurodegenerative disorder characterized by global developmental delay and severe intellectual disability. Microcephaly, progressive cortical atrophy, cerebellar hypoplasia and delayed myelination are neurological hallmarks in affected individuals. NMIHBA is caused by biallelic variants in PRUNE1 encoding prune exopolyphosphatase 1. We provide in-depth clinical description of two affected siblings harboring compound heterozygous variant alleles, c.383G > A (p.Arg128Gln), c.520G > T (p.Gly174*) in PRUNE1. To gain insights into disease biology, we biochemically characterized missense variants within the conserved N-terminal aspartic acid-histidine-histidine (DHH) motif and provide evidence that they result in the destabilization of protein structure and/or loss of exopolyphosphatase activity. Genetic ablation of Prune1 results in midgestational lethality in mice, associated with perturbations to embryonic growth and vascular development. Our findings suggest that NMIHBA results from hypomorphic variant alleles in humans and underscore the potential key role of PRUNE1 exopolyphoshatase activity in neurodevelopment.


Subject(s)
Acid Anhydride Hydrolases/deficiency , Intellectual Disability/pathology , Microcephaly/pathology , Muscle Hypotonia/pathology , Mutation , Neurodevelopmental Disorders/pathology , Phosphoric Monoester Hydrolases/genetics , Alleles , Animals , Child, Preschool , Female , Humans , Infant , Intellectual Disability/etiology , Intellectual Disability/metabolism , Male , Mice , Microcephaly/etiology , Microcephaly/metabolism , Muscle Hypotonia/etiology , Muscle Hypotonia/metabolism , Neurodevelopmental Disorders/etiology , Neurodevelopmental Disorders/metabolism , Pedigree , Phenotype
13.
Am J Hum Genet ; 107(4): 763-777, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32937143

ABSTRACT

Distal hereditary motor neuropathies (HMNs) and axonal Charcot-Marie-Tooth neuropathy (CMT2) are clinically and genetically heterogeneous diseases characterized primarily by motor neuron degeneration and distal weakness. The genetic cause for about half of the individuals affected by HMN/CMT2 remains unknown. Here, we report the identification of pathogenic variants in GBF1 (Golgi brefeldin A-resistant guanine nucleotide exchange factor 1) in four unrelated families with individuals affected by sporadic or dominant HMN/CMT2. Genomic sequencing analyses in seven affected individuals uncovered four distinct heterozygous GBF1 variants, two of which occurred de novo. Other known HMN/CMT2-implicated genes were excluded. Affected individuals show HMN/CMT2 with slowly progressive distal muscle weakness and musculoskeletal deformities. Electrophysiological studies confirmed axonal damage with chronic neurogenic changes. Three individuals had additional distal sensory loss. GBF1 encodes a guanine-nucleotide exchange factor that facilitates the activation of members of the ARF (ADP-ribosylation factor) family of small GTPases. GBF1 is mainly involved in the formation of coatomer protein complex (COPI) vesicles, maintenance and function of the Golgi apparatus, and mitochondria migration and positioning. We demonstrate that GBF1 is present in mouse spinal cord and muscle tissues and is particularly abundant in neuropathologically relevant sites, such as the motor neuron and the growth cone. Consistent with the described role of GBF1 in Golgi function and maintenance, we observed marked increase in Golgi fragmentation in primary fibroblasts derived from all affected individuals in this study. Our results not only reinforce the existing link between Golgi fragmentation and neurodegeneration but also demonstrate that pathogenic variants in GBF1 are associated with HMN/CMT2.


Subject(s)
Axons/metabolism , Charcot-Marie-Tooth Disease/genetics , Guanine Nucleotide Exchange Factors/genetics , Muscle Weakness/genetics , Muscular Atrophy, Spinal/genetics , Musculoskeletal Abnormalities/genetics , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , Animals , Axons/pathology , COP-Coated Vesicles/metabolism , COP-Coated Vesicles/pathology , Charcot-Marie-Tooth Disease/diagnosis , Charcot-Marie-Tooth Disease/metabolism , Charcot-Marie-Tooth Disease/pathology , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression , Golgi Apparatus/metabolism , Golgi Apparatus/pathology , Guanine Nucleotide Exchange Factors/metabolism , Heterozygote , Humans , Male , Mice , Middle Aged , Mitochondria/metabolism , Mitochondria/pathology , Motor Neurons/metabolism , Motor Neurons/pathology , Muscle Weakness/diagnosis , Muscle Weakness/metabolism , Muscle Weakness/pathology , Muscular Atrophy, Spinal/diagnosis , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , Musculoskeletal Abnormalities/diagnosis , Musculoskeletal Abnormalities/metabolism , Musculoskeletal Abnormalities/pathology , Mutation , Pedigree , Primary Cell Culture , Spinal Cord/abnormalities , Spinal Cord/metabolism
14.
Clin Genet ; 104(2): 275-276, 2023 08.
Article in English | MEDLINE | ID: mdl-37096293

ABSTRACT

A short report of two male siblings born with cutis aplasia, lymphedema and intestinal lymphangiectasia, one found to carry bi-allelic variants in the TIE1 gene known to be associated with congenital lymphedema.


Subject(s)
Ectodermal Dysplasia , Lymphangiectasis, Intestinal , Lymphedema , Humans , Male , Lymphangiectasis, Intestinal/diagnosis , Lymphangiectasis, Intestinal/genetics , Lymphangiectasis, Intestinal/complications , Ectodermal Dysplasia/genetics , Alleles , Siblings , Lymphedema/genetics
15.
Brain ; 145(11): 3872-3885, 2022 11 21.
Article in English | MEDLINE | ID: mdl-35136953

ABSTRACT

Mutations in nitrogen permease regulator-like 3 (NPRL3), a component of the GATOR1 complex within the mTOR pathway, are associated with epilepsy and malformations of cortical development. Little is known about the effects of NPRL3 loss on neuronal mTOR signalling and morphology, or cerebral cortical development and seizure susceptibility. We report the clinical phenotypic spectrum of a founder NPRL3 pedigree (c.349delG, p.Glu117LysFS; n = 133) among Old Order Mennonites dating to 1727. Next, as a strategy to define the role of NPRL3 in cortical development, CRISPR/Cas9 Nprl3 knockout in Neuro2a cells in vitro and in foetal mouse brain in vivo was used to assess the effects of Nprl3 knockout on mTOR activation, subcellular mTOR localization, nutrient signalling, cell morphology and aggregation, cerebral cortical cytoarchitecture and network integrity. The NPRL3 pedigree exhibited an epilepsy penetrance of 28% and heterogeneous clinical phenotypes with a range of epilepsy semiologies, i.e. focal or generalized onset, brain imaging abnormalities, i.e. polymicrogyria, focal cortical dysplasia or normal imaging, and EEG findings, e.g. focal, multi-focal or generalized spikes, focal or generalized slowing. Whole exome analysis comparing a seizure-free group (n = 37) to those with epilepsy (n = 24) to search for gene modifiers for epilepsy did not identify a unique genetic modifier that explained the variability in seizure penetrance in this cohort. Nprl3 knockout in vitro caused mTOR pathway hyperactivation, cell soma enlargement and the formation of cellular aggregates seen in time-lapse videos that were prevented with the mTOR inhibitors rapamycin or torin1. In Nprl3 knockout cells, mTOR remained localized on the lysosome in a constitutively active conformation, as evidenced by phosphorylation of ribosomal S6 and 4E-BP1 proteins, even under nutrient starvation (amino acid-free) conditions, demonstrating that Nprl3 loss decouples mTOR activation from neuronal metabolic state. To model human malformations of cortical development associated with NPRL3 variants, we created a focal Nprl3 knockout in foetal mouse cortex by in utero electroporation and found altered cortical lamination and white matter heterotopic neurons, effects which were prevented with rapamycin treatment. EEG recordings showed network hyperexcitability and reduced seizure threshold to pentylenetetrazol treatment. NPRL3 variants are linked to a highly variable clinical phenotype which we propose results from mTOR-dependent effects on cell structure, cortical development and network organization.


Subject(s)
Epilepsy , Malformations of Cortical Development , Animals , Humans , Mice , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Malformations of Cortical Development/genetics , GTPase-Activating Proteins/genetics , Epilepsy/genetics , Neurons/metabolism , Seizures/genetics , Sirolimus
16.
Genet Med ; 24(9): 1899-1908, 2022 09.
Article in English | MEDLINE | ID: mdl-35616647

ABSTRACT

PURPOSE: Neurodevelopmental disorders (NDDs), such as intellectual disability (ID) and autism spectrum disorder (ASD), exhibit genetic and phenotypic heterogeneity, making them difficult to differentiate without a molecular diagnosis. The Clinical Genome Resource Intellectual Disability/Autism Gene Curation Expert Panel (GCEP) uses systematic curation to distinguish ID/ASD genes that are appropriate for clinical testing (ie, with substantial evidence supporting their relationship to disease) from those that are not. METHODS: Using the Clinical Genome Resource gene-disease validity curation framework, the ID/Autism GCEP classified genes frequently included on clinical ID/ASD testing panels as Definitive, Strong, Moderate, Limited, Disputed, Refuted, or No Known Disease Relationship. RESULTS: As of September 2021, 156 gene-disease pairs have been evaluated. Although most (75%) were determined to have definitive roles in NDDs, 22 (14%) genes evaluated had either Limited or Disputed evidence. Such genes are currently not recommended for use in clinical testing owing to the limited ability to assess the effect of identified variants. CONCLUSION: Our understanding of gene-disease relationships evolves over time; new relationships are discovered and previously-held conclusions may be questioned. Without periodic re-examination, inaccurate gene-disease claims may be perpetuated. The ID/Autism GCEP will continue to evaluate these claims to improve diagnosis and clinical care for NDDs.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Intellectual Disability , Neurodevelopmental Disorders , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/genetics , Autistic Disorder/diagnosis , Autistic Disorder/genetics , Humans , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Neurodevelopmental Disorders/genetics
17.
Blood ; 136(23): 2638-2655, 2020 12 03.
Article in English | MEDLINE | ID: mdl-32603431

ABSTRACT

Biallelic mutations in the genes encoding CD27 or its ligand CD70 underlie inborn errors of immunity (IEIs) characterized predominantly by Epstein-Barr virus (EBV)-associated immune dysregulation, such as chronic viremia, severe infectious mononucleosis, hemophagocytic lymphohistiocytosis (HLH), lymphoproliferation, and malignancy. A comprehensive understanding of the natural history, immune characteristics, and transplant outcomes has remained elusive. Here, in a multi-institutional global collaboration, we collected the clinical information of 49 patients from 29 families (CD27, n = 33; CD70, n = 16), including 24 previously unreported individuals and identified a total of 16 distinct mutations in CD27, and 8 in CD70, respectively. The majority of patients (90%) were EBV+ at diagnosis, but only ∼30% presented with infectious mononucleosis. Lymphoproliferation and lymphoma were the main clinical manifestations (70% and 43%, respectively), and 9 of the CD27-deficient patients developed HLH. Twenty-one patients (43%) developed autoinflammatory features including uveitis, arthritis, and periodic fever. Detailed immunological characterization revealed aberrant generation of memory B and T cells, including a paucity of EBV-specific T cells, and impaired effector function of CD8+ T cells, thereby providing mechanistic insight into cellular defects underpinning the clinical features of disrupted CD27/CD70 signaling. Nineteen patients underwent allogeneic hematopoietic stem cell transplantation (HSCT) prior to adulthood predominantly because of lymphoma, with 95% survival without disease recurrence. Our data highlight the marked predisposition to lymphoma of both CD27- and CD70-deficient patients. The excellent outcome after HSCT supports the timely implementation of this treatment modality particularly in patients presenting with malignant transformation to lymphoma.


Subject(s)
CD27 Ligand/deficiency , Genetic Diseases, Inborn , Hematopoietic Stem Cell Transplantation , Immunologic Deficiency Syndromes , Tumor Necrosis Factor Receptor Superfamily, Member 7/deficiency , Adolescent , Adult , Allografts , Child , Child, Preschool , Disease-Free Survival , Female , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/immunology , Genetic Diseases, Inborn/mortality , Genetic Diseases, Inborn/therapy , Humans , Immunologic Deficiency Syndromes/genetics , Immunologic Deficiency Syndromes/immunology , Immunologic Deficiency Syndromes/mortality , Immunologic Deficiency Syndromes/therapy , Infant , Male , Retrospective Studies , Survival Rate
18.
Allergy ; 77(3): 1004-1019, 2022 03.
Article in English | MEDLINE | ID: mdl-34287962

ABSTRACT

BACKGROUND: Biallelic loss-of-function mutations in CARMIL2 cause combined immunodeficiency associated with dermatitis, inflammatory bowel disease (IBD), and EBV-related smooth muscle tumors. Clinical and immunological characterizations of the disease with long-term follow-up and treatment options have not been previously reported in large cohorts. We sought to determine the clinical and immunological features of CARMIL2 deficiency and long-term efficacy of treatment in controlling different disease manifestations. METHODS: The presenting phenotypes, long-term outcomes, and treatment responses were evaluated prospectively in 15 CARMIL2-deficient patients, including 13 novel cases. Lymphocyte subpopulations, protein expression, regulatory T (Treg), and circulating T follicular helper (cTFH ) cells were analyzed. Three-dimensional (3D) migration assay was performed to determine T-cell shape. RESULTS: Mean age at disease onset was 38 ± 23 months. Main clinical features were skin manifestations (n = 14, 93%), failure to thrive (n = 10, 67%), recurrent infections (n = 10, 67%), allergic symptoms (n = 8, 53%), chronic diarrhea (n = 4, 27%), and EBV-related leiomyoma (n = 2, 13%). Skin manifestations ranged from atopic and seborrheic dermatitis to psoriasiform rash. Patients had reduced proportions of memory CD4+ T cells, Treg, and cTFH cells. Memory B and NK cells were also decreased. CARMIL2-deficient T cells exhibited reduced T-cell proliferation and cytokine production following CD28 co-stimulation and normal morphology when migrating in a high-density 3D collagen gel matrix. IBD was the most severe clinical manifestation, leading to growth retardation, requiring multiple interventional treatments. All patients were alive with a median follow-up of 10.8 years (range: 3-17 years). CONCLUSION: This cohort provides clinical and immunological features and long-term follow-up of different manifestations of CARMIL2 deficiency.


Subject(s)
Inflammatory Bowel Diseases , Primary Immunodeficiency Diseases , Humans , Microfilament Proteins/genetics , Mutation , Phenotype
19.
Eur J Neurol ; 29(4): 1174-1180, 2022 04.
Article in English | MEDLINE | ID: mdl-34935254

ABSTRACT

BACKGROUND AND PURPOSE: Muscular A-type lamin-interacting protein (MLIP) is most abundantly expressed in cardiac and skeletal muscle. In vitro and animal studies have shown its regulatory role in myoblast differentiation and in organization of myonuclear positioning in skeletal muscle, as well as in cardiomyocyte adaptation and cardiomyopathy. We report the association of biallelic truncating variation in the MLIP gene with human disease in five individuals from two unrelated pedigrees. METHODS: Clinical evaluation and exome sequencing were performed in two unrelated families with elevated creatine kinase level. RESULTS: Family 1. A 6-year-old girl born to consanguineous parents of Arab-Muslim origin presented with myalgia, early fatigue after mild-to-moderate physical exertion, and elevated creatine kinase levels up to 16,000 U/L. Exome sequencing revealed a novel homozygous nonsense variant, c.2530C>T; p.Arg844Ter, in the MLIP gene. Family 2. Three individuals from two distantly related families of Old Order Amish ancestry presented with elevated creatine kinase levels, one of whom also presented with abnormal electrocardiography results. On exome sequencing, all showed homozygosity for a novel nonsense MLIP variant c.1825A>T; p.Lys609Ter. Another individual from this pedigree, who had sinus arrhythmia and for whom creatine kinase level was not available, was also homozygous for this variant. CONCLUSIONS: Our findings suggest that biallelic truncating variants in MLIP result in myopathy characterized by hyperCKemia. Moreover, these cases of MLIP-related disease may indicate that at least in some instances this condition is associated with muscle decompensation and fatigability during low-to-moderate intensity muscle exertion as well as possible cardiac involvement.


Subject(s)
Cardiomyopathies , Muscular Diseases , Adaptation, Physiological , Animals , Humans , Muscular Diseases/genetics , Myalgia , Pedigree
20.
BMC Cardiovasc Disord ; 22(1): 109, 2022 03 17.
Article in English | MEDLINE | ID: mdl-35300601

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) due to a founder variant in Apolipoprotein B (ApoBR3500Q) is reported in 12% of the Pennsylvania Amish community. By studying a cohort of ApoBR3500Q heterozygotes and homozygotes, we aimed to characterize the biochemical and cardiac imaging features in children and young adults with a common genetic background and similar lifestyle. METHODS: We employed advanced lipid profile testing, carotid intima media thickness (CIMT), pulse wave velocity (PWV), and peripheral artery tonometry (PAT) to assess atherosclerosis in a cohort of Amish ApoBR3500Q heterozygotes (n = 13), homozygotes (n = 3), and their unaffected, age-matched siblings (n = 9). ApoBR3500Q homozygotes were not included in statistical comparisons. RESULTS: LDL cholesterol (LDL-C) was significantly elevated among ApoBR3500Q heterozygotes compared to sibling controls, though several ApoBR3500Q heterozygotes had LDL-C levels in the normal range. LDL particles (LDL-P), small, dense LDL particles, and ApoB were also significantly elevated among subjects with ApoBR3500Q. Despite these differences in serum lipids and particles, CIMT and PWV were not significantly different between ApoBR3500Q heterozygotes and controls in age-adjusted analysis. CONCLUSIONS: We provide a detailed description of the serum lipids, atherosclerotic plaque burden, vascular stiffness, and endothelial function among children and young adults with FH due to heterozygous ApoBR3500Q. Fasting LDL-C was lower than what is seen with other forms of FH, and even normal in several ApoBR3500Q heterozygotes, emphasizing the importance of cascade genetic testing among related individuals for diagnosis. We found increased number of LDL particles among ApoBR3500Q heterozygotes but an absence of detectable atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipoproteinemia Type II , Amish/genetics , Apolipoproteins B/genetics , Carotid Intima-Media Thickness , Child , Cholesterol, LDL , Humans , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/genetics , Mutation , Pulse Wave Analysis , Receptors, LDL/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL