Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Plant Cell ; 35(2): 644-672, 2023 02 20.
Article in English | MEDLINE | ID: mdl-36562730

ABSTRACT

Five versions of the Chlamydomonas reinhardtii reference genome have been produced over the last two decades. Here we present version 6, bringing significant advances in assembly quality and structural annotations. PacBio-based chromosome-level assemblies for two laboratory strains, CC-503 and CC-4532, provide resources for the plus and minus mating-type alleles. We corrected major misassemblies in previous versions and validated our assemblies via linkage analyses. Contiguity increased over ten-fold and >80% of filled gaps are within genes. We used Iso-Seq and deep RNA-seq datasets to improve structural annotations, and updated gene symbols and textual annotation of functionally characterized genes via extensive manual curation. We discovered that the cell wall-less classical reference strain CC-503 exhibits genomic instability potentially caused by deletion of the helicase RECQ3, with major structural mutations identified that affect >100 genes. We therefore present the CC-4532 assembly as the primary reference, although this strain also carries unique structural mutations and is experiencing rapid proliferation of a Gypsy retrotransposon. We expect all laboratory strains to harbor gene-disrupting mutations, which should be considered when interpreting and comparing experimental results. Collectively, the resources presented here herald a new era of Chlamydomonas genomics and will provide the foundation for continued research in this important reference organism.


Subject(s)
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas/genetics , Genomics/methods , Mutation/genetics , Reproduction , Chlamydomonas reinhardtii/genetics
2.
Nucleic Acids Res ; 51(16): 8383-8401, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37526283

ABSTRACT

Gene functional descriptions offer a crucial line of evidence for candidate genes underlying trait variation. Conversely, plant responses to environmental cues represent important resources to decipher gene function and subsequently provide molecular targets for plant improvement through gene editing. However, biological roles of large proportions of genes across the plant phylogeny are poorly annotated. Here we describe the Joint Genome Institute (JGI) Plant Gene Atlas, an updateable data resource consisting of transcript abundance assays spanning 18 diverse species. To integrate across these diverse genotypes, we analyzed expression profiles, built gene clusters that exhibited tissue/condition specific expression, and tested for transcriptional response to environmental queues. We discovered extensive phylogenetically constrained and condition-specific expression profiles for genes without any previously documented functional annotation. Such conserved expression patterns and tightly co-expressed gene clusters let us assign expression derived additional biological information to 64 495 genes with otherwise unknown functions. The ever-expanding Gene Atlas resource is available at JGI Plant Gene Atlas (https://plantgeneatlas.jgi.doe.gov) and Phytozome (https://phytozome.jgi.doe.gov/), providing bulk access to data and user-specified queries of gene sets. Combined, these web interfaces let users access differentially expressed genes, track orthologs across the Gene Atlas plants, graphically represent co-expressed genes, and visualize gene ontology and pathway enrichments.


Subject(s)
Genes, Plant , Transcriptome , Gene Expression Regulation, Plant , Genome, Plant , Phylogeny , Software , Transcriptome/genetics , Atlases as Topic
3.
Plant J ; 100(5): 1066-1082, 2019 12.
Article in English | MEDLINE | ID: mdl-31433882

ABSTRACT

We report reference-quality genome assemblies and annotations for two accessions of soybean (Glycine max) and for one accession of Glycine soja, the closest wild relative of G. max. The G. max assemblies provided are for widely used US cultivars: the northern line Williams 82 (Wm82) and the southern line Lee. The Wm82 assembly improves the prior published assembly, and the Lee and G. soja assemblies are new for these accessions. Comparisons among the three accessions show generally high structural conservation, but nucleotide difference of 1.7 single-nucleotide polymorphisms (snps) per kb between Wm82 and Lee, and 4.7 snps per kb between these lines and G. soja. snp distributions and comparisons with genotypes of the Lee and Wm82 parents highlight patterns of introgression and haplotype structure. Comparisons against the US germplasm collection show placement of the sequenced accessions relative to global soybean diversity. Analysis of a pan-gene collection shows generally high conservation, with variation occurring primarily in genomically clustered gene families. We found approximately 40-42 inversions per chromosome between either Lee or Wm82v4 and G. soja, and approximately 32 inversions per chromosome between Wm82 and Lee. We also investigated five domestication loci. For each locus, we found two different alleles with functional differences between G. soja and the two domesticated accessions. The genome assemblies for multiple cultivated accessions and for the closest wild ancestor of soybean provides a valuable set of resources for identifying causal variants that underlie traits for the domestication and improvement of soybean, serving as a basis for future research and crop improvement efforts for this important crop species.


Subject(s)
Fabaceae/genetics , Genetic Variation , Genome, Plant , Alleles , Centromere/genetics , Disease Resistance/genetics , Genetics, Population , Genotype , Haplotypes , Hardness , Multigene Family , Phylogeny , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Repetitive Sequences, Nucleic Acid , Seed Bank/classification , Sequence Inversion , Telomere/genetics
4.
Nature ; 510(7505): 356-62, 2014 Jun 19.
Article in English | MEDLINE | ID: mdl-24919147

ABSTRACT

Eucalypts are the world's most widely planted hardwood trees. Their outstanding diversity, adaptability and growth have made them a global renewable resource of fibre and energy. We sequenced and assembled >94% of the 640-megabase genome of Eucalyptus grandis. Of 36,376 predicted protein-coding genes, 34% occur in tandem duplications, the largest proportion thus far in plant genomes. Eucalyptus also shows the highest diversity of genes for specialized metabolites such as terpenes that act as chemical defence and provide unique pharmaceutical oils. Genome sequencing of the E. grandis sister species E. globulus and a set of inbred E. grandis tree genomes reveals dynamic genome evolution and hotspots of inbreeding depression. The E. grandis genome is the first reference for the eudicot order Myrtales and is placed here sister to the eurosids. This resource expands our understanding of the unique biology of large woody perennials and provides a powerful tool to accelerate comparative biology, breeding and biotechnology.


Subject(s)
Eucalyptus/genetics , Genome, Plant , Eucalyptus/classification , Evolution, Molecular , Genetic Variation , Inbreeding , Phylogeny
5.
Plant J ; 93(3): 515-533, 2018 02.
Article in English | MEDLINE | ID: mdl-29237241

ABSTRACT

The draft genome of the moss model, Physcomitrella patens, comprised approximately 2000 unordered scaffolds. In order to enable analyses of genome structure and evolution we generated a chromosome-scale genome assembly using genetic linkage as well as (end) sequencing of long DNA fragments. We find that 57% of the genome comprises transposable elements (TEs), some of which may be actively transposing during the life cycle. Unlike in flowering plant genomes, gene- and TE-rich regions show an overall even distribution along the chromosomes. However, the chromosomes are mono-centric with peaks of a class of Copia elements potentially coinciding with centromeres. Gene body methylation is evident in 5.7% of the protein-coding genes, typically coinciding with low GC and low expression. Some giant virus insertions are transcriptionally active and might protect gametes from viral infection via siRNA mediated silencing. Structure-based detection methods show that the genome evolved via two rounds of whole genome duplications (WGDs), apparently common in mosses but not in liverworts and hornworts. Several hundred genes are present in colinear regions conserved since the last common ancestor of plants. These syntenic regions are enriched for functions related to plant-specific cell growth and tissue organization. The P. patens genome lacks the TE-rich pericentromeric and gene-rich distal regions typical for most flowering plant genomes. More non-seed plant genomes are needed to unravel how plant genomes evolve, and to understand whether the P. patens genome structure is typical for mosses or bryophytes.


Subject(s)
Biological Evolution , Bryopsida/genetics , Chromosomes, Plant , Genome, Plant , Centromere , Chromatin/genetics , DNA Methylation , DNA Transposable Elements , Genetic Variation , Polymorphism, Single Nucleotide , Recombination, Genetic , Synteny
6.
Nucleic Acids Res ; 43(W1): W589-98, 2015 Jul 01.
Article in English | MEDLINE | ID: mdl-25897122

ABSTRACT

The BioMart Community Portal (www.biomart.org) is a community-driven effort to provide a unified interface to biomedical databases that are distributed worldwide. The portal provides access to numerous database projects supported by 30 scientific organizations. It includes over 800 different biological datasets spanning genomics, proteomics, model organisms, cancer data, ontology information and more. All resources available through the portal are independently administered and funded by their host organizations. The BioMart data federation technology provides a unified interface to all the available data. The latest version of the portal comes with many new databases that have been created by our ever-growing community. It also comes with better support and extensibility for data analysis and visualization tools. A new addition to our toolbox, the enrichment analysis tool is now accessible through graphical and web service interface. The BioMart community portal averages over one million requests per day. Building on this level of service and the wealth of information that has become available, the BioMart Community Portal has introduced a new, more scalable and cheaper alternative to the large data stores maintained by specialized organizations.


Subject(s)
Database Management Systems , Genomics , Humans , Internet , Neoplasms/genetics , Proteomics
7.
Nature ; 466(7307): 720-6, 2010 Aug 05.
Article in English | MEDLINE | ID: mdl-20686567

ABSTRACT

Sponges are an ancient group of animals that diverged from other metazoans over 600 million years ago. Here we present the draft genome sequence of Amphimedon queenslandica, a demosponge from the Great Barrier Reef, and show that it is remarkably similar to other animal genomes in content, structure and organization. Comparative analysis enabled by the sequencing of the sponge genome reveals genomic events linked to the origin and early evolution of animals, including the appearance, expansion and diversification of pan-metazoan transcription factor, signalling pathway and structural genes. This diverse 'toolkit' of genes correlates with critical aspects of all metazoan body plans, and comprises cell cycle control and growth, development, somatic- and germ-cell specification, cell adhesion, innate immunity and allorecognition. Notably, many of the genes associated with the emergence of animals are also implicated in cancer, which arises from defects in basic processes associated with metazoan multicellularity.


Subject(s)
Evolution, Molecular , Genome/genetics , Porifera/genetics , Animals , Apoptosis/genetics , Cell Adhesion/genetics , Cell Cycle/genetics , Cell Polarity/genetics , Cell Proliferation , Genes/genetics , Genomics , Humans , Immunity, Innate/genetics , Models, Biological , Neurons/metabolism , Phosphotransferases/chemistry , Phosphotransferases/genetics , Phylogeny , Porifera/anatomy & histology , Porifera/cytology , Porifera/immunology , Sequence Analysis, DNA , Signal Transduction/genetics
8.
Nature ; 463(7278): 178-83, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20075913

ABSTRACT

Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties.


Subject(s)
Genome, Plant/genetics , Genomics , Glycine max/genetics , Polyploidy , Arabidopsis/genetics , Breeding , Chromosomes, Plant/genetics , Evolution, Molecular , Gene Duplication , Genes, Duplicate/genetics , Genes, Plant/genetics , Molecular Sequence Data , Multigene Family/genetics , Phylogeny , Plant Root Nodulation/genetics , Quantitative Trait Loci/genetics , Recombination, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Soybean Oil/biosynthesis , Synteny/genetics , Transcription Factors/genetics
9.
Nature ; 464(7288): 592-6, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20228792

ABSTRACT

The freshwater cnidarian Hydra was first described in 1702 and has been the object of study for 300 years. Experimental studies of Hydra between 1736 and 1744 culminated in the discovery of asexual reproduction of an animal by budding, the first description of regeneration in an animal, and successful transplantation of tissue between animals. Today, Hydra is an important model for studies of axial patterning, stem cell biology and regeneration. Here we report the genome of Hydra magnipapillata and compare it to the genomes of the anthozoan Nematostella vectensis and other animals. The Hydra genome has been shaped by bursts of transposable element expansion, horizontal gene transfer, trans-splicing, and simplification of gene structure and gene content that parallel simplification of the Hydra life cycle. We also report the sequence of the genome of a novel bacterium stably associated with H. magnipapillata. Comparisons of the Hydra genome to the genomes of other animals shed light on the evolution of epithelia, contractile tissues, developmentally regulated transcription factors, the Spemann-Mangold organizer, pluripotency genes and the neuromuscular junction.


Subject(s)
Genome/genetics , Hydra/genetics , Animals , Anthozoa/genetics , Comamonadaceae/genetics , DNA Transposable Elements/genetics , Gene Transfer, Horizontal/genetics , Genome, Bacterial/genetics , Hydra/microbiology , Hydra/ultrastructure , Molecular Sequence Data , Neuromuscular Junction/ultrastructure
10.
Nature ; 451(7180): 783-8, 2008 Feb 14.
Article in English | MEDLINE | ID: mdl-18273011

ABSTRACT

Choanoflagellates are the closest known relatives of metazoans. To discover potential molecular mechanisms underlying the evolution of metazoan multicellularity, we sequenced and analysed the genome of the unicellular choanoflagellate Monosiga brevicollis. The genome contains approximately 9,200 intron-rich genes, including a number that encode cell adhesion and signalling protein domains that are otherwise restricted to metazoans. Here we show that the physical linkages among protein domains often differ between M. brevicollis and metazoans, suggesting that abundant domain shuffling followed the separation of the choanoflagellate and metazoan lineages. The completion of the M. brevicollis genome allows us to reconstruct with increasing resolution the genomic changes that accompanied the origin of metazoans.


Subject(s)
Eukaryotic Cells/metabolism , Genome/genetics , Phylogeny , Animals , Cell Adhesion , Conserved Sequence , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Evolution, Molecular , Extracellular Matrix/metabolism , Gene Expression Regulation , Genetic Speciation , Hedgehog Proteins/chemistry , Hedgehog Proteins/genetics , Humans , Introns/genetics , Phosphotyrosine/metabolism , Protein Structure, Tertiary/genetics , Receptors, Notch/chemistry , Receptors, Notch/genetics , Signal Transduction/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic
11.
Nucleic Acids Res ; 40(Database issue): D1178-86, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110026

ABSTRACT

The number of sequenced plant genomes and associated genomic resources is growing rapidly with the advent of both an increased focus on plant genomics from funding agencies, and the application of inexpensive next generation sequencing. To interact with this increasing body of data, we have developed Phytozome (http://www.phytozome.net), a comparative hub for plant genome and gene family data and analysis. Phytozome provides a view of the evolutionary history of every plant gene at the level of sequence, gene structure, gene family and genome organization, while at the same time providing access to the sequences and functional annotations of a growing number (currently 25) of complete plant genomes, including all the land plants and selected algae sequenced at the Joint Genome Institute, as well as selected species sequenced elsewhere. Through a comprehensive plant genome database and web portal, these data and analyses are available to the broader plant science research community, providing powerful comparative genomics tools that help to link model systems with other plants of economic and ecological importance.


Subject(s)
Databases, Nucleic Acid , Genes, Plant , Genome, Plant , Genomics , Multigene Family , Software
12.
Nucleic Acids Res ; 40(Database issue): D26-32, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22110030

ABSTRACT

The Department of Energy (DOE) Joint Genome Institute (JGI) is a national user facility with massive-scale DNA sequencing and analysis capabilities dedicated to advancing genomics for bioenergy and environmental applications. Beyond generating tens of trillions of DNA bases annually, the Institute develops and maintains data management systems and specialized analytical capabilities to manage and interpret complex genomic data sets, and to enable an expanding community of users around the world to analyze these data in different contexts over the web. The JGI Genome Portal (http://genome.jgi.doe.gov) provides a unified access point to all JGI genomic databases and analytical tools. A user can find all DOE JGI sequencing projects and their status, search for and download assemblies and annotations of sequenced genomes, and interactively explore those genomes and compare them with other sequenced microbes, fungi, plants or metagenomes using specialized systems tailored to each particular class of organisms. We describe here the general organization of the Genome Portal and the most recent addition, MycoCosm (http://jgi.doe.gov/fungi), a new integrated fungal genomics resource.


Subject(s)
Databases, Genetic , Genomics , Sequence Analysis, DNA , Cluster Analysis , Genome, Fungal , Internet , Molecular Sequence Annotation , Software , Systems Integration
13.
Plant Genome ; 17(1): e20319, 2024 Mar.
Article in English | MEDLINE | ID: mdl-36946261

ABSTRACT

Cowpea, Vigna unguiculata L. Walp., is a diploid warm-season legume of critical importance as both food and fodder in sub-Saharan Africa. This species is also grown in Northern Africa, Europe, Latin America, North America, and East to Southeast Asia. To capture the genomic diversity of domesticates of this important legume, de novo genome assemblies were produced for representatives of six subpopulations of cultivated cowpea identified previously from genotyping of several hundred diverse accessions. In the most complete assembly (IT97K-499-35), 26,026 core and 4963 noncore genes were identified, with 35,436 pan genes when considering all seven accessions. GO terms associated with response to stress and defense response were highly enriched among the noncore genes, while core genes were enriched in terms related to transcription factor activity, and transport and metabolic processes. Over 5 million single nucleotide polymorphisms (SNPs) relative to each assembly and over 40 structural variants >1 Mb in size were identified by comparing genomes. Vu10 was the chromosome with the highest frequency of SNPs, and Vu04 had the most structural variants. Noncore genes harbor a larger proportion of potentially disruptive variants than core genes, including missense, stop gain, and frameshift mutations; this suggests that noncore genes substantially contribute to diversity within domesticated cowpea.


Subject(s)
Fabaceae , Vigna , Vigna/genetics , Genome, Plant , Genes, Plant , Fabaceae/genetics , Quantitative Trait Loci
14.
Nat Plants ; 10(6): 1039-1051, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38816498

ABSTRACT

Cotton (Gossypium hirsutum L.) is the key renewable fibre crop worldwide, yet its yield and fibre quality show high variability due to genotype-specific traits and complex interactions among cultivars, management practices and environmental factors. Modern breeding practices may limit future yield gains due to a narrow founding gene pool. Precision breeding and biotechnological approaches offer potential solutions, contingent on accurate cultivar-specific data. Here we address this need by generating high-quality reference genomes for three modern cotton cultivars ('UGA230', 'UA48' and 'CSX8308') and updating the 'TM-1' cotton genetic standard reference. Despite hypothesized genetic uniformity, considerable sequence and structural variation was observed among the four genomes, which overlap with ancient and ongoing genomic introgressions from 'Pima' cotton, gene regulatory mechanisms and phenotypic trait divergence. Differentially expressed genes across fibre development correlate with fibre production, potentially contributing to the distinctive fibre quality traits observed in modern cotton cultivars. These genomes and comparative analyses provide a valuable foundation for future genetic endeavours to enhance global cotton yield and sustainability.


Subject(s)
Genome, Plant , Gossypium , Plant Breeding , Gossypium/genetics , Gossypium/growth & development , Plant Breeding/methods , Cotton Fiber , Genetic Variation , Phenotype
15.
Genetics ; 223(2)2023 02 09.
Article in English | MEDLINE | ID: mdl-36218464

ABSTRACT

The "genomic shock" hypothesis posits that unusual challenges to genome integrity such as whole genome duplication may induce chaotic genome restructuring. Decades of research on polyploid genomes have revealed that this is often, but not always the case. While some polyploids show major chromosomal rearrangements and derepression of transposable elements in the immediate aftermath of whole genome duplication, others do not. Nonetheless, all polyploids show gradual diploidization over evolutionary time. To evaluate these hypotheses, we produced a chromosome-scale reference genome for the natural allotetraploid grass Brachypodium hybridum, accession "Bhyb26." We compared 2 independently derived accessions of B. hybridum and their deeply diverged diploid progenitor species Brachypodium stacei and Brachypodium distachyon. The 2 B. hybridum lineages provide a natural timecourse in genome evolution because one formed 1.4 million years ago, and the other formed 140 thousand years ago. The genome of the older lineage reveals signs of gradual post-whole genome duplication genome evolution including minor gene loss and genome rearrangement that are missing from the younger lineage. In neither B. hybridum lineage do we find signs of homeologous recombination or pronounced transposable element activation, though we find evidence supporting steady post-whole genome duplication transposable element activity in the older lineage. Gene loss in the older lineage was slightly biased toward 1 subgenome, but genome dominance was not observed at the transcriptomic level. We propose that relaxed selection, rather than an abrupt genomic shock, drives evolutionary novelty in B. hybridum, and that the progenitor species' similarity in transposable element load may account for the subtlety of the observed genome dominance.


Subject(s)
Brachypodium , Brachypodium/genetics , DNA Transposable Elements , Diploidy , Genomics , Polyploidy , Genome, Plant , Evolution, Molecular
16.
G3 (Bethesda) ; 14(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-37883711

ABSTRACT

Perennial grasses are important forage crops and emerging biomass crops and have the potential to be more sustainable grain crops. However, most perennial grass crops are difficult experimental subjects due to their large size, difficult genetics, and/or their recalcitrance to transformation. Thus, a tractable model perennial grass could be used to rapidly make discoveries that can be translated to perennial grass crops. Brachypodium sylvaticum has the potential to serve as such a model because of its small size, rapid generation time, simple genetics, and transformability. Here, we provide a high-quality genome assembly and annotation for B. sylvaticum, an essential resource for a modern model system. In addition, we conducted transcriptomic studies under 4 abiotic stresses (water, heat, salt, and freezing). Our results indicate that crowns are more responsive to freezing than leaves which may help them overwinter. We observed extensive transcriptional responses with varying temporal dynamics to all abiotic stresses, including classic heat-responsive genes. These results can be used to form testable hypotheses about how perennial grasses respond to these stresses. Taken together, these results will allow B. sylvaticum to serve as a truly tractable perennial model system.


Subject(s)
Brachypodium , Humans , Brachypodium/genetics , Genome, Plant , Biomass , Transcriptome , Stress, Physiological/genetics
17.
Elife ; 112022 09 09.
Article in English | MEDLINE | ID: mdl-36083267

ABSTRACT

The development of multiple chromosome-scale reference genome sequences in many taxonomic groups has yielded a high-resolution view of the patterns and processes of molecular evolution. Nonetheless, leveraging information across multiple genomes remains a significant challenge in nearly all eukaryotic systems. These challenges range from studying the evolution of chromosome structure, to finding candidate genes for quantitative trait loci, to testing hypotheses about speciation and adaptation. Here, we present GENESPACE, which addresses these challenges by integrating conserved gene order and orthology to define the expected physical position of all genes across multiple genomes. We demonstrate this utility by dissecting presence-absence, copy-number, and structural variation at three levels of biological organization: spanning 300 million years of vertebrate sex chromosome evolution, across the diversity of the Poaceae (grass) plant family, and among 26 maize cultivars. The methods to build and visualize syntenic orthology in the GENESPACE R package offer a significant addition to existing gene family and synteny programs, especially in polyploid, outbred, and other complex genomes.


The genome is the complete DNA sequence of an individual. It is a crucial foundation for many studies in medicine, agriculture, and conservation biology. Advances in genetics have made it possible to rapidly sequence, or read out, the genome of many organisms. For closely related species, scientists can then do detailed comparisons, revealing similar genes with a shared past or a common role, but comparing more distantly related organisms remains difficult. One major challenge is that genes are often lost or duplicated over evolutionary time. One way to be more confident is to look at 'synteny', or how genes are organized or ordered within the genome. In some groups of species, synteny persists across millions of years of evolution. Combining sequence similarity with gene order could make comparisons between distantly related species more robust. To do this, Lovell et al. developed GENESPACE, a software that links similarities between DNA sequences to the order of genes in a genome. This allows researchers to visualize and explore related DNA sequences and determine whether genes have been lost or duplicated. To demonstrate the value of GENESPACE, Lovell et al. explored evolution in vertebrates and flowering plants. The software was able to highlight the shared sequences between unique sex chromosomes in birds and mammals, and it was able to track the positions of genes important in the evolution of grass crops including maize, wheat, and rice. Exploring the genetic code in this way could lead to a better understanding of the evolution of important sections of the genome. It might also allow scientists to find target genes for applications like crop improvement. Lovell et al. have designed the GENESPACE software to be easy for other scientists to use, allowing them to make graphics and perform analyses with few programming skills.


Subject(s)
DNA Copy Number Variations , Evolution, Molecular , Gene Dosage , Genome, Plant , Quantitative Trait Loci , Synteny
18.
Nat Commun ; 13(1): 2001, 2022 04 14.
Article in English | MEDLINE | ID: mdl-35422045

ABSTRACT

The nutrient-rich tubers of the greater yam, Dioscorea alata L., provide food and income security for millions of people around the world. Despite its global importance, however, greater yam remains an orphan crop. Here, we address this resource gap by presenting a highly contiguous chromosome-scale genome assembly of D. alata combined with a dense genetic map derived from African breeding populations. The genome sequence reveals an ancient allotetraploidization in the Dioscorea lineage, followed by extensive genome-wide reorganization. Using the genomic tools, we find quantitative trait loci for resistance to anthracnose, a damaging fungal pathogen of yam, and several tuber quality traits. Genomic analysis of breeding lines reveals both extensive inbreeding as well as regions of extensive heterozygosity that may represent interspecific introgression during domestication. These tools and insights will enable yam breeders to unlock the potential of this staple crop and take full advantage of its adaptability to varied environments.


Subject(s)
Dioscorea , Chromosomes , Dioscorea/genetics , Humans , Plant Breeding , Plant Tubers , Quantitative Trait Loci/genetics
19.
Annu Rev Plant Biol ; 72: 411-435, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33848428

ABSTRACT

A pan-genome is the nonredundant collection of genes and/or DNA sequences in a species. Numerous studies have shown that plant pan-genomes are typically much larger than the genome of any individual and that a sizable fraction of the genes in any individual are present in only some genomes. The construction and interpretation of plant pan-genomes are challenging due to the large size and repetitive content of plant genomes. Most pan-genomes are largely focused on nontransposable element protein coding genes because they are more easily analyzed and defined than noncoding and repetitive sequences. Nevertheless, noncoding and repetitive DNA play important roles in determining the phenotype and genome evolution. Fortunately, it is now feasible to make multiple high-quality genomes that can be used to construct high-resolution pan-genomes that capture all the variation. However, assembling, displaying, and interacting with such high-resolution pan-genomes will require the development of new tools.


Subject(s)
Genome, Plant , Genomics
20.
Hortic Res ; 8(1): 37, 2021 Feb 11.
Article in English | MEDLINE | ID: mdl-33574224

ABSTRACT

Betula L. (birch) is a pioneer hardwood tree species with ecological, economic, and evolutionary importance in the Northern Hemisphere. We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes. The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume. Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species. Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1-MKK2-MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes. Our genomic and transcriptome analyses provide insight into the structures, features, and evolution of the B. platyphylla genome. The chromosome-level genome and gene resources of B. platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B. platyphylla.

SELECTION OF CITATIONS
SEARCH DETAIL