Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Cell ; 178(5): 1205-1221.e17, 2019 08 22.
Article in English | MEDLINE | ID: mdl-31442408

ABSTRACT

A hallmark feature of inflammation is the orchestrated recruitment of neutrophils from the bloodstream into inflamed tissue. Although selectins and integrins mediate recruitment in many tissues, they have a minimal role in the lungs and liver. Exploiting an unbiased in vivo functional screen, we identified a lung and liver homing peptide that functionally abrogates neutrophil recruitment to these organs. Using biochemical, genetic, and confocal intravital imaging approaches, we identified dipeptidase-1 (DPEP1) as the target and established its role as a physical adhesion receptor for neutrophil sequestration independent of its enzymatic activity. Importantly, genetic ablation or functional peptide blocking of DPEP1 significantly reduced neutrophil recruitment to the lungs and liver and provided improved survival in models of endotoxemia. Our data establish DPEP1 as a major adhesion receptor on the lung and liver endothelium and identify a therapeutic target for neutrophil-driven inflammatory diseases of the lungs.


Subject(s)
Dipeptidases/metabolism , Neutrophils/physiology , Platelet Glycoprotein GPIb-IX Complex/metabolism , Animals , Cilastatin/pharmacology , Cilastatin/therapeutic use , Dipeptidases/antagonists & inhibitors , Dipeptidases/genetics , Disease Models, Animal , Endotoxemia/mortality , Endotoxemia/pathology , Endotoxemia/prevention & control , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , Lipopolysaccharides/pharmacology , Liver/drug effects , Liver/immunology , Liver/metabolism , Lung/drug effects , Lung/immunology , Lung/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, SCID , Neutrophil Infiltration/drug effects , Peptides/chemical synthesis , Peptides/chemistry , Peptides/pharmacology , Survival Rate
2.
J Allergy Clin Immunol ; 131(6): 1663-73, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23453796

ABSTRACT

BACKGROUND: Chronic hypersensitivity pneumonitis is characterized by pulmonary inflammation and fibrosis in response to repeated inhalation of mainly organic antigens. It is recognized that IL-17A is crucial for the development of pulmonary inflammation in murine models of experimental hypersensitivity pneumonitis, but its role in the development of pulmonary fibrosis has not been determined. Furthermore, the main cell type(s) that produce IL-17A in experimental hypersensitivity pneumonitis have not yet been identified. OBJECTIVE: Our objectives were to test the hypothesis that IL-17A plays a central role in the development of pulmonary fibrosis in experimental hypersensitivity pneumonitis and to determine the main inflammatory cell type(s) responsible for IL-17A production. METHODS: We used a mouse model of experimental hypersensitivity pneumonitis in which IL-17A was inhibited or neutrophils were depleted. We also used IL-17RA-deficient and RAG-2-deficient mice. Lung IL-17A-producing cells were identified by fluorescence-activated cell sorting of myeloid versus lymphoid cell populations, intracellular IL-17A staining, flow cytometry, and quantitative reverse transcription PCR for IL-17A mRNA. RESULTS: We found that the development of pulmonary fibrosis depended on IL-17A and was significantly attenuated by neutrophil depletion. Neutrophils and monocytes/macrophages were the main cell types that expressed IL-17A in our model. CONCLUSIONS: We have identified the central roles of IL-17A and neutrophils in the pathogenesis of fibrosis in experimental hypersensitivity pneumonitis. We have also established that nonlymphocytic innate immune cells, specifically neutrophils and monocytes/macrophages, rather than TH17 lymphocytes, are the predominant source of IL-17A in experimental hypersensitivity pneumonitis.


Subject(s)
Alveolitis, Extrinsic Allergic/complications , Interleukin-17/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Pulmonary Fibrosis/etiology , Alveolitis, Extrinsic Allergic/immunology , Alveolitis, Extrinsic Allergic/metabolism , Alveolitis, Extrinsic Allergic/pathology , Animals , Antigens, Bacterial/immunology , Chemotactic Factors/metabolism , Disease Models, Animal , Humans , Lung/immunology , Lung/metabolism , Lung/pathology , Macrophages/immunology , Macrophages/metabolism , Mice , Mice, Transgenic , Monocytes/immunology , Monocytes/metabolism , Pulmonary Alveoli/immunology , Pulmonary Alveoli/pathology , Receptors, Interleukin-17/metabolism , Saccharopolyspora/immunology , Th1 Cells/immunology , Th1 Cells/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL