Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Theranostics ; 12(11): 4834-4850, 2022.
Article in English | MEDLINE | ID: mdl-35836798

ABSTRACT

CAR T cell research in solid tumors often lacks spatiotemporal information and therefore, there is a need for a molecular tomography to facilitate high-throughput preclinical monitoring of CAR T cells. Furthermore, a gap exists between macro- and microlevel imaging data to better assess intratumor infiltration of therapeutic cells. We addressed this challenge by combining 3D µComputer tomography bioluminescence tomography (µCT/BLT), light-sheet fluorescence microscopy (LSFM) and cyclic immunofluorescence (IF) staining. Methods: NSG mice with subcutaneous AsPC1 xenograft tumors were treated with EGFR CAR T cell (± IL-2) or control BDCA-2 CAR T cell (± IL-2) (n = 7 each). Therapeutic T cells were genetically modified to co-express the CAR of interest and the luciferase CBR2opt. IL-2 was administered s.c. under the xenograft tumor on days 1, 3, 5 and 7 post-therapy-initiation at a dose of 25,000 IU/mouse. CAR T cell distribution was measured in 2D BLI and 3D µCT/BLT every 3-4 days. On day 6, 4 tumors were excised for cyclic IF where tumor sections were stained with a panel of 25 antibodies. On day 6 and 13, 8 tumors were excised from rhodamine lectin-preinjected mice, permeabilized, stained for CD3 and imaged by LSFM. Results: 3D µCT/BLT revealed that CAR T cells pharmacokinetics is affected by antigen recognition, where CAR T cell tumor accumulation based on target-dependent infiltration was significantly increased in comparison to target-independent infiltration, and spleen accumulation was delayed. LSFM supported these findings and revealed higher T cell accumulation in target-positive groups at day 6, which also infiltrated the tumor deeper. Interestingly, LSFM showed that most CAR T cells accumulate at the tumor periphery and around vessels. Surprisingly, LSFM and cyclic IF revealed that local IL-2 application resulted in early-phase increased proliferation, but long-term overstimulation of CAR T cells, which halted the early added therapeutic effect. Conclusion: Overall, we demonstrated that 3D µCT/BLT is a valuable non-isotope-based technology for whole-body cell therapy monitoring and investigating CAR T cell pharmacokinetics. We also presented combining LSFM and MICS for ex vivo 3D- and 2D-microscopy tissue analysis to assess intratumoral therapeutic cell distribution and status.


Subject(s)
Immunotherapy, Adoptive , Neoplasms , Animals , Cell Line, Tumor , Humans , Immunotherapy, Adoptive/methods , Interleukin-2 , Mice , Multimodal Imaging , Neoplasms/diagnostic imaging , Neoplasms/therapy , Workflow
2.
Oncoimmunology ; 11(1): 2140534, 2022.
Article in English | MEDLINE | ID: mdl-36387056

ABSTRACT

Solid tumors consist of malignant and nonmalignant cells that together create the local tumor microenvironment (TME). Additionally, the TME is characterized by the expression of numerous soluble factors such as TGF-ß. TGF-ß plays an important role in the TME by suppressing T cell effector function and promoting tumor invasiveness. Up to now CAR T cells exclusively target tumor-associated antigens (TAA) located on the cell membrane. Thus, strategies to exploit soluble antigens as CAR targets within the TME are needed. This study demonstrates a novel approach using Adapter CAR (AdCAR) T cells for the detection of soluble latent TGF-ß within the TME of a pancreatic tumor model. We show that AdCARs in combination with the respective adapter can be used to sense soluble tumor-derived latent TGF-ß, both in vitro and in vivo. Sensing of the soluble antigen induced cellular activation and effector cytokine production in AdCAR T cells. Moreover, we evaluated AdCAR T cells for the combined targeting of soluble latent TGF-ß and tumor cell killing by targeting CD66c as TAA in vivo. In sum, our study broadens the spectrum of targetable moieties for AdCAR T cells by soluble latent TGF-ß.


Subject(s)
Antigens, Neoplasm , Transforming Growth Factor beta , Transforming Growth Factor beta/metabolism , Oligonucleotides , Cell Membrane/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL