Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 250
Filter
1.
Proc Natl Acad Sci U S A ; 120(26): e2300387120, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37339200

ABSTRACT

Transitions between wake and sleep states show a progressive pattern underpinned by local sleep regulation. In contrast, little evidence is available on non-rapid eye movement (NREM) to rapid eye movement (REM) sleep boundaries, considered as mainly reflecting subcortical regulation. Using polysomnography (PSG) combined with stereoelectroencephalography (SEEG) in humans undergoing epilepsy presurgical evaluation, we explored the dynamics of NREM-to-REM transitions. PSG was used to visually score transitions and identify REM sleep features. SEEG-based local transitions were determined automatically with a machine learning algorithm using features validated for automatic intra-cranial sleep scoring (10.5281/zenodo.7410501). We analyzed 2988 channel-transitions from 29 patients. The average transition time from all intracerebral channels to the first visually marked REM sleep epoch was 8 s ± 1 min 58 s, with a great heterogeneity between brain areas. Transitions were observed first in the lateral occipital cortex, preceding scalp transition by 1 min 57 s ± 2 min 14 s (d = -0.83), and close to the first sawtooth wave marker. Regions with late transitions were the inferior frontal and orbital gyri (1 min 1 s ± 2 min 1 s, d = 0.43, and 1 min 1 s ± 2 min 5 s, d = 0.43, after scalp transition). Intracranial transitions were earlier than scalp transitions as the night advanced (last sleep cycle, d = -0.81). We show a reproducible gradual pattern of REM sleep initiation, suggesting the involvement of cortical mechanisms of regulation. This provides clues for understanding oneiric experiences occurring at the NREM/REM boundary.


Subject(s)
Sleep, REM , Sleep , Humans , Sleep, REM/physiology , Sleep/physiology , Cerebral Cortex/physiology , Polysomnography , Frontal Lobe , Electroencephalography , Sleep Stages/physiology
2.
Brain ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38875488

ABSTRACT

Epileptic seizures recorded with stereoelectroencephalography (SEEG) can take a fraction of a second or several seconds to propagate from one region to another. What explains such propagation patterns? We combine tractography and SEEG to determine the relationship between seizure propagation and the white matter architecture and to describe seizure propagation mechanisms. Patient-specific spatiotemporal seizure propagation maps were combined with tractography from diffusion imaging of matched subjects from the Human Connectome Project. The onset of seizure activity was marked on a channel-by-channel basis by two board-certified neurologists for all channels involved in the seizure. We measured the tract connectivity (number of tracts) between regions-of-interest pairs among the seizure onset zone, regions of seizure spread, and non-involved regions. We also investigated how tract-connected the seizure onset zone is to regions of early seizure spread compared to regions of late spread. Comparisons were made after correcting for differences in distance. Sixty-nine seizures were marked across 26 patients with drug-resistant epilepsy; 11 were seizure free after surgery (Engel IA) and 15 were not (Engel IB-IV). The seizure onset zone was more tract connected to regions of seizure spread than to non-involved regions (p<0.0001); however, regions of seizure spread were not differentially tract-connected to other regions of seizure spread compared to non-involved regions. In seizure free patients only, regions of seizure spread were more tract connected to the seizure onset zone than to other regions of spread (p<0.0001). Over the temporal evolution of a seizure, the seizure onset zone was significantly more tract connected to regions of early spread compared to regions of late spread in seizure free patients only (p<0.0001). By integrating information on structure, we demonstrate that seizure propagation is likely mediated by white matter tracts. The pattern of connectivity between seizure onset zone, regions of spread and non-involved regions demonstrates that the onset zone may be largely responsible for seizures propagating throughout the brain, rather than seizures propagating to intermediate points, from which further propagation takes place. Our findings also suggest that seizure propagation over seconds may be the result of a continuous bombardment of action potentials from the seizure onset zone to regions of spread. In non-seizure free patients, the paucity of tracts from the presumed seizure onset zone to regions of spread suggests that the onset zone was missed. Fully understanding the structure-propagation relationship may eventually provide insight into selecting the correct targets for epilepsy surgery.

3.
Ann Neurol ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712215

ABSTRACT

OBJECTIVE: Sleep has important influences on focal interictal epileptiform discharges (IEDs), and the rates and spatial extent of IEDs are increased in non-rapid eye movement (NREM) sleep. In contrast, the influence of sleep on seizures is less clear, and its effects on seizure topography are poorly documented. We evaluated the influences of NREM sleep on ictal spatiotemporal dynamics and contrasted these with interictal network dynamics. METHODS: We included patients with drug-resistant focal epilepsy who underwent continuous intracranial electroencephalography (iEEG) with depth electrodes. Patients were selected if they had 1 to 3 seizures from each vigilance state, wakefulness and NREM sleep, within a 48-hour window, and under the same antiseizure medication. A 10-minute epoch of the interictal iEEG was selected per state, and IEDs were detected automatically. A total of 25 patients (13 women; aged 32.5 ± 7.1 years) were included. RESULTS: The seizure onset pattern, duration, spatiotemporal propagation, and latency of ictal high-frequency activity did not differ significantly between wakefulness and NREM sleep (all p > 0.05). In contrast, IED rates and spatial distribution were increased in NREM compared with wakefulness (p < 0.001, Cliff's d = 0.48 and 0.49). The spatial overlap between vigilance states was higher for seizures (57.1 ± 40.1%) than IEDs (41.7 ± 46.2%; p = 0.001, Cliff's d = 0.51). INTERPRETATION: In contrast to its effects on IEDs, NREM sleep does not affect ictal spatiotemporal dynamics. This suggests that once the brain surpasses the seizure threshold, it will follow the underlying epileptic network irrespective of the vigilance state. These findings offer valuable insights into neural network dynamics in epilepsy and have important clinical implications for localizing seizure foci. ANN NEUROL 2023.

4.
Ann Neurol ; 93(3): 522-535, 2023 03.
Article in English | MEDLINE | ID: mdl-36373178

ABSTRACT

OBJECTIVE: Epileptic spikes are the traditional interictal electroencephalographic (EEG) biomarker for epilepsy. Given their low specificity for identifying the epileptogenic zone (EZ), they are given only moderate attention in presurgical evaluation. This study aims to demonstrate that it is possible to identify specific spike features in intracranial EEG that optimally define the EZ and predict surgical outcome. METHODS: We analyzed spike features on stereo-EEG segments from 83 operated patients from 2 epilepsy centers (37 Engel IA) in wakefulness, non-rapid eye movement sleep, and rapid eye movement sleep. After automated spike detection, we investigated 135 spike features based on rate, morphology, propagation, and energy to determine the best feature or feature combination to discriminate the EZ in seizure-free and non-seizure-free patients by applying 4-fold cross-validation. RESULTS: The rate of spikes with preceding gamma activity in wakefulness performed better for surgical outcome classification (4-fold area under receiver operating characteristics curve [AUC] = 0.755 ± 0.07) than the seizure onset zone, the current gold standard (AUC = 0.563 ± 0.05, p = 0.015) and the ripple rate, an emerging seizure-independent biomarker (AUC = 0.537 ± 0.07, p = 0.006). Channels with a spike-gamma rate exceeding 1.9/min had an 80% probability of being in the EZ. Combining features did not improve the results. INTERPRETATION: Resection of brain regions with high spike-gamma rates in wakefulness is associated with a high probability of achieving seizure freedom. This rate could be applied to determine the minimal number of spiking channels requiring resection. In addition to quantitative analysis, this feature is easily accessible to visual analysis, which could aid clinicians during presurgical evaluation. ANN NEUROL 2023;93:522-535.


Subject(s)
Epilepsy , Humans , Epilepsy/surgery , Seizures/diagnosis , Electroencephalography/methods , Brain/surgery , Biomarkers
5.
Neuroimage ; 274: 120158, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37149236

ABSTRACT

BACKGROUND: Magnetoencephalography (MEG) is a widely used non-invasive tool to estimate brain activity with high temporal resolution. However, due to the ill-posed nature of the MEG source imaging (MSI) problem, the ability of MSI to identify accurately underlying brain sources along the cortical surface is still uncertain and requires validation. METHOD: We validated the ability of MSI to estimate the background resting state activity of 45 healthy participants by comparing it to the intracranial EEG (iEEG) atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/). First, we applied wavelet-based Maximum Entropy on the Mean (wMEM) as an MSI technique. Next, we converted MEG source maps into intracranial space by applying a forward model to the MEG-reconstructed source maps, and estimated virtual iEEG (ViEEG) potentials on each iEEG channel location; we finally quantitatively compared those with actual iEEG signals from the atlas for 38 regions of interest in the canonical frequency bands. RESULTS: The MEG spectra were more accurately estimated in the lateral regions compared to the medial regions. The regions with higher amplitude in the ViEEG than in the iEEG were more accurately recovered. In the deep regions, MEG-estimated amplitudes were largely underestimated and the spectra were poorly recovered. Overall, our wMEM results were similar to those obtained with minimum norm or beamformer source localization. Moreover, the MEG largely overestimated oscillatory peaks in the alpha band, especially in the anterior and deep regions. This is possibly due to higher phase synchronization of alpha oscillations over extended regions, exceeding the spatial sensitivity of iEEG but detected by MEG. Importantly, we found that MEG-estimated spectra were more comparable to spectra from the iEEG atlas after the aperiodic components were removed. CONCLUSION: This study identifies brain regions and frequencies for which MEG source analysis is likely to be reliable, a promising step towards resolving the uncertainty in recovering intracerebral activity from non-invasive MEG studies.


Subject(s)
Electrocorticography , Magnetoencephalography , Humans , Magnetoencephalography/methods , Electrocorticography/methods , Brain , Brain Mapping/methods , Electroencephalography/methods
6.
Hum Brain Mapp ; 44(17): 5982-6000, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37750611

ABSTRACT

Simultaneous electroencephalography-functional MRI (EEG-fMRI) is a unique and noninvasive method for epilepsy presurgical evaluation. When selecting voxels by null-hypothesis tests, the conventional analysis may overestimate fMRI response amplitudes related to interictal epileptic discharges (IEDs), especially when IEDs are rare. We aimed to estimate fMRI response amplitudes represented by blood oxygen level dependent (BOLD) percentage changes related to IEDs using a hierarchical model. It involves the local and distributed hemodynamic response homogeneity to regularize estimations. Bayesian inference was applied to fit the model. Eighty-two epilepsy patients who underwent EEG-fMRI and subsequent surgery were included in this study. A conventional voxel-wise general linear model was compared to the hierarchical model on estimated fMRI response amplitudes and on the concordance between the highest response cluster and the surgical cavity. The voxel-wise model overestimated fMRI responses compared to the hierarchical model, evidenced by a practically and statistically significant difference between the estimated BOLD percentage changes. Only the hierarchical model differentiated brief and long-lasting IEDs with significantly different BOLD percentage changes. Overall, the hierarchical model outperformed the voxel-wise model on presurgical evaluation, measured by higher prediction performance. When compared with a previous study, the hierarchical model showed higher performance metric values, but the same or lower sensitivity. Our results demonstrated the capability of the hierarchical model of providing more physiologically reasonable and more accurate estimations of fMRI response amplitudes induced by IEDs. To enhance the sensitivity of EEG-fMRI for presurgical evaluation, it may be necessary to incorporate more appropriate spatial priors and bespoke decision strategies.


Subject(s)
Epilepsy , Magnetic Resonance Imaging , Humans , Magnetic Resonance Imaging/methods , Bayes Theorem , Brain Mapping/methods , Oxygen , Epilepsy/diagnostic imaging , Epilepsy/surgery , Electroencephalography/methods , Brain/diagnostic imaging
7.
Epilepsia ; 64(11): 3036-3048, 2023 11.
Article in English | MEDLINE | ID: mdl-37714213

ABSTRACT

OBJECTIVE: Rapid eye movement (REM) sleep reduces the rate and extent of interictal epileptiform discharges (IEDs). Breakthrough epileptic activity during REM sleep is therefore thought to best localize the seizure onset zone (SOZ). We utilized polysomnography combined with direct cortical recordings to investigate the influences of anatomical locations and the time of night on the suppressive effect of REM sleep on IEDs. METHODS: Forty consecutive patients with drug-resistant focal epilepsy underwent combined polysomnography and stereo-electroencephalography during presurgical evaluation. Ten-minute interictal epochs were selected 2 h prior to sleep onset (wakefulness), and from the first and second half of the night during non-REM (NREM) sleep and REM sleep. IEDs were detected automatically across all channels. Anatomic localization, time of night, and channel type (within or outside the SOZ) were tested as modulating factors. RESULTS: Relative to wakefulness, there was a suppression of IEDs by REM sleep in neocortical regions (median = -27.6%), whereas mesiotemporal regions showed an increase in IEDs (19.1%, p = .01, d = .39). This effect was reversed when comparing the regional suppression of IEDs by REM sleep relative to NREM sleep (-35.1% in neocortical, -58.7% in mesiotemporal, p < .001, d = .39). Across all patients, no clinically relevant novel IED regions were observed in REM sleep versus NREM or wakefulness based on our predetermined thresholds (4 IEDs/min in REM, 0 IEDs/min in NREM and wakefulness). Finally, there was a reduction in IEDs in late (NREM: 1.08/min, REM: .61/min) compared to early sleep (NREM: 1.22/min, REM: .69/min) for both NREM (p < .001, d = .21) and REM (p = .04, d = .14). SIGNIFICANCE: Our results demonstrate a spatiotemporal effect of IED suppression by REM sleep relative to wakefulness in neocortical but not mesiotemporal regions, and in late versus early sleep. This suggests the importance of considering sleep stage interactions and the potential influences of anatomical locations when using IEDs to define the epileptic focus.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Neocortex , Humans , Sleep, REM , Sleep , Electroencephalography/methods
8.
Epilepsia ; 64(11): 3049-3060, 2023 11.
Article in English | MEDLINE | ID: mdl-37592755

ABSTRACT

OBJECTIVE: Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS: Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS: Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE: The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.


Subject(s)
Drug Resistant Epilepsy , Epilepsy , Humans , Electroencephalography/methods , Epilepsy/diagnosis , Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/surgery , Stereotaxic Techniques , Brain/diagnostic imaging , Brain/surgery
9.
Epilepsia ; 63(11): 2725-2744, 2022 11.
Article in English | MEDLINE | ID: mdl-35822919

ABSTRACT

Simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) is a unique and noninvasive method for investigating epileptic activity. Interictal epileptiform discharge-related EEG-fMRI provides cortical and subcortical blood oxygen level-dependent (BOLD) signal changes specific to epileptic discharges. As a result, EEG-fMRI has revealed insights into generators and networks involved in epileptic activity in different types of epilepsy, demonstrating-for instance-the implication of the thalamus in human generalized spike and wave discharges and the role of the default mode network in absences and focal epilepsy, and has suggested a mechanism for the cortico-subcortical interactions in Lennox-Gastaut syndrome discharges. EEG-fMRI can find deep sources of epileptic activity not available to scalp EEG or magnetoencephalography, and provides critical new information to delineate the epileptic focus when considering surgical treatment or electrode implantation. In recent years, methodological advances, such as artifact removal and automatic detection of events, have rendered this method easier to implement, and its clinical potential has since been established by evidence of the impact of BOLD response on clinical decision-making and of the relationship between concordance of BOLD responses with extent of resection and surgical outcome. This review presents the recent developments in EEG-fMRI methodology and EEG-fMRI studies in different types of epileptic disorders as follows: EEG-fMRI acquisition, gradient and pulse artifact removal, statistical analysis, clinical applications, presurgical evaluation, altered physiological state in generalized genetic epilepsy, and pediatric EEG-fMRI studies.


Subject(s)
Epilepsy, Generalized , Epilepsy , Child , Humans , Brain Mapping/methods , Electroencephalography/methods , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Epilepsy/diagnostic imaging
10.
Epilepsia ; 63(2): 483-496, 2022 02.
Article in English | MEDLINE | ID: mdl-34919741

ABSTRACT

OBJECTIVE: The integration of high-frequency oscillations (HFOs; ripples [80-250 Hz], fast ripples [250-500 Hz]) in epilepsy evaluation is hampered by physiological HFOs, which cannot be reliably differentiated from pathological HFOs. We evaluated whether defining abnormal HFO rates by statistical comparison to region-specific physiological HFO rates observed in the healthy brain improves identification of the epileptic focus and surgical outcome prediction. METHODS: We detected HFOs in 151 consecutive patients who underwent stereo-electroencephalography and subsequent resective epilepsy surgery at two tertiary epilepsy centers. We compared how HFOs identified the resection cavity and predicted seizure-free outcome using two thresholds from the literature (HFO rate > 1/min; 50% of the total number of a patient's HFOs) and three thresholds based on normative rates from the Montreal Neurological Institute Open iEEG Atlas (https://mni-open-ieegatlas. RESEARCH: mcgill.ca/): global Atlas threshold, regional Atlas threshold, and regional + 10% threshold after regional Atlas correction. RESULTS: Using ripples, the regional + 10% threshold performed best for focus identification (77.3% accuracy, 27% sensitivity, 97.1% specificity, 80.6% positive predictive value [PPV], 78.2% negative predictive value [NPV]) and outcome prediction (69.5% accuracy, 58.6% sensitivity, 76.3% specificity, 60.7% PPV, 74.7% NPV). This was an improvement for focus identification (+1.1% accuracy, +17.0% PPV; p < .001) and outcome prediction (+12.0% sensitivity, +1.0% PPV; p = .05) compared to the 50% threshold. The improvement was particularly marked for foci in cortex, where physiological ripples are frequent (outcome: +35.3% sensitivity, +5.3% PPV; p = .014). In these cases, the regional + 10% threshold outperformed fast ripple rate > 1/min (+3.6% accuracy, +26.5% sensitivity, +21.6% PPV; p < .001) and seizure onset zone (+13.5% accuracy, +29.4% sensitivity, +17.0% PPV; p < .05-.01) for outcome prediction. Normalization did not improve the performance of fast ripples. SIGNIFICANCE: Defining abnormal HFO rates by statistical comparison to rates in healthy tissue overcomes an important weakness in the clinical use of ripples. It improves focus identification and outcome prediction compared to standard HFO measures, increasing their clinical applicability.


Subject(s)
Epilepsy , Brain/surgery , Brain Mapping , Electroencephalography , Epilepsy/diagnosis , Epilepsy/surgery , Humans , Seizures/surgery
11.
J Neurosci ; 40(46): 8900-8912, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33055279

ABSTRACT

Sawtooth waves (STW) are bursts of frontocentral slow oscillations recorded in the scalp electroencephalogram (EEG) during rapid eye movement (REM) sleep. Little is known about their cortical generators and functional significance. Stereo-EEG performed for presurgical epilepsy evaluation offers the unique possibility to study neurophysiology in situ in the human brain. We investigated intracranial correlates of scalp-detected STW in 26 patients (14 women) undergoing combined stereo-EEG/polysomnography. We visually marked STW segments in scalp EEG and selected stereo-EEG channels exhibiting normal activity for intracranial analyses. Channels were grouped in 30 brain regions. The spectral power in each channel and frequency band was computed during STW and non-STW control segments. Ripples (80-250 Hz) were automatically detected during STW and control segments. The spectral power in the different frequency bands and the ripple rates were then compared between STW and control segments in each brain region. An increase in 2-4 Hz power during STW segments was found in all brain regions, except the occipital lobe, with large effect sizes in the parietotemporal junction, the lateral and orbital frontal cortex, the anterior insula, and mesiotemporal structures. A widespread increase in high-frequency activity, including ripples, was observed concomitantly, involving the sensorimotor cortex, associative areas, and limbic structures. This distribution showed a high spatiotemporal heterogeneity. Our results suggest that STW are associated with widely distributed, but locally regulated REM sleep slow oscillations. By driving fast activities, STW may orchestrate synchronized reactivations of multifocal activities, allowing tagging of complex representations necessary for REM sleep-dependent memory consolidation.SIGNIFICANCE STATEMENT Sawtooth waves (STW) present as scalp electroencephalographic (EEG) bursts of slow waves contrasting with the low-voltage fast desynchronized activity of REM sleep. Little is known about their cortical origin and function. Using combined stereo-EEG/polysomnography possible only in the human brain during presurgical epilepsy evaluation, we explored the intracranial correlates of STW. We found that a large set of regions in the parietal, frontal, and insular cortices shows increases in 2-4 Hz power during scalp EEG STW, that STW are associated with a strong and widespread increase in high frequencies, and that these slow and fast activities exhibit a high spatiotemporal heterogeneity. These electrophysiological properties suggest that STW may be involved in cognitive processes during REM sleep.


Subject(s)
Cerebral Cortex/physiology , Electrocorticography , Sleep, REM/physiology , Adult , Brain Mapping , Female , Humans , Male , Middle Aged , Polysomnography , Sleep Stages/physiology , Wavelet Analysis , Young Adult
12.
Ann Neurol ; 87(2): 289-301, 2020 02.
Article in English | MEDLINE | ID: mdl-31777112

ABSTRACT

OBJECTIVE: Regional variations in oscillatory activity during human sleep remain unknown. Using the unique ability of intracranial electroencephalography to study in situ brain physiology, this study assesses regional variations of electroencephalographic sleep activity and creates the first atlas of human sleep using recordings from the first sleep cycle. METHODS: Intracerebral electroencephalographic recordings with channels displaying physiological activity from nonlesional tissue were selected from 91 patients of 3 tertiary epilepsy centers. Sections during non-rapid eye movement sleep (stages N2 and N3) and rapid eye movement sleep (stage R) were selected from the first sleep cycle for oscillatory and nonoscillatory signal analysis. Results of 1,468 channels were grouped into 38 regions covering all cortical areas. RESULTS: We found regional differences in the distribution of sleep transients and spectral content during all sleep stages. There was a caudorostral gradient, with more slow frequencies and fewer spindles in temporoparieto-occipital than in frontal cortex. Moreover, deep-seated structures showed spectral peaks differing from the baseline electroencephalogram. The regions with >60% of channels presenting significant rhythmic activity were either mesial or temporal basal structures that contribute minimally to the scalp electroencephalogram. Finally, during deeper sleep stages, electroencephalographic analysis revealed a more homogeneous spatial distribution, with increased coupling between high and low frequencies. INTERPRETATION: This study provides a better understanding of the regional variability of sleep, and establishes a baseline for human sleep in all cortical regions during the first sleep cycle. Furthermore, the open-access atlas will be a unique resource for research (https://mni-open-ieegatlas. RESEARCH: mcgill.ca). ANN NEUROL 2020;87:289-301.


Subject(s)
Cerebral Cortex/physiology , Electrocorticography/methods , Sleep Stages/physiology , Adolescent , Adult , Brain Mapping/statistics & numerical data , Female , Humans , Male , Middle Aged , Young Adult
13.
Epilepsy Behav ; 120: 107986, 2021 07.
Article in English | MEDLINE | ID: mdl-33965723

ABSTRACT

OBJECTIVES: Electroencephalography-correlated functional magnetic resonance imaging (EEG-fMRI) allows imaging of brain-wide epileptic networks, and demonstrates that focal interictal epileptic activity is sometimes accompanied by bilateral functional activations. The corpus callosum (CC) facilitates bilateral spread of epileptic activity and at times targeted surgically for drug-resistant epilepsy (DRE). We hypothesized that focal epileptic networks are more unilateral in patients lacking intact CC. METHODS: We included focal DRE patients who underwent pre-surgical EEG-fMRI and had CC agenesis (group A, n = 5), patients who previously underwent anterior callosotomy as treatment for drop attacks and continued having seizures (group B, n = 6), and control group of patients with focal epilepsy and intact CC (group C, n = 9). Blood-oxygenation-level-dependent (BOLD) signal maps were generated for interictal epileptic discharges. To quantify bi-hemispheric distribution of epileptic networks, laterality indices were compared between groups. Anatomical and diffusion-weighted imaging demonstrated white matter pathways. RESULTS: 96% of studies demonstrated bilateral activations. Laterality indices were similar in groups A and C, whereas group B demonstrated a more bilateral network than group C (p = 0.028). Diffusion-weighted and anatomical imaging showed aberrant white matter pathways and larger anterior commissure in groups A and B. 68% of studies showed maximal activation cluster concordant with the presumed epileptic focus, 28% showed non-maximal activation at presumed focus. SIGNIFICANCE: Focal epileptic activity is associated with bilateral functional activations despite lack of intact CC, and is associated with stronger contralateral activation in patients after anterior callosotomy compared to controls. These findings disprove our initial hypothesis, and combined with white matter structural imaging, may indicate that the CC is not a sole route of propagation of epileptic activity, which might spread via anterior commissure. Our study demonstrates the utility of EEG-fMRI in assessing epileptic networks and potentially aiding in tailoring surgical treatments in DRE patients with callosal anomalies, and in callosal surgeries.


Subject(s)
Epilepsy , Magnetic Resonance Imaging , Brain , Brain Mapping , Corpus Callosum , Electroencephalography , Humans , Seizures
14.
Neuroimage ; 213: 116748, 2020 06.
Article in English | MEDLINE | ID: mdl-32194281

ABSTRACT

Sleep spindles and K-complexes (KCs) are a hallmark of N2 sleep. While the functional significance of spindles is comparatively well investigated, there is still ongoing debate about the role of the KC: it is unclear whether it is a cortical response to an arousing stimulus (either external or internal) or whether it has sleep-promoting properties. Invasive intracranial EEG recordings from individuals with drug-resistant epilepsy offer a unique opportunity to study in-situ human brain physiology. To better understand the function of the KC, we aimed to (i) investigate the intracranial correlates of spontaneous scalp KCs, and (ii) compare the intracranial activity of scalp KCs associated or not with arousals. Whole-night recordings from adults with drug-resistant focal epilepsy who underwent combined intracranial-scalp EEG for pre-surgical evaluation at the Montreal Neurological Institute between 2010 and 2018 were selected. KCs were visually marked in the scalp and categorized according to the presence of microarousals: (i) Pre-microarousal KCs; (ii) KCs during an ongoing microarousal; and (iii) KCs without microarousal. Power in different spectral bands was computed to compare physiological intracranial EEG activity at the time of scalp KCs relative to the background, as well as to compare microarousal subcategories. A total of 1198 scalp KCs selected from 40 subjects were analyzed, resulting in 32,504 intracranial KC segments across 992 channels. Forty-seven percent of KCs were without microarousal, 30% were pre-microarousal, and 23% occurred during microarousals. All scalp KCs were accompanied by widespread cortical increases in delta band power (0.3-4 â€‹Hz) relative to the background: the highest percentages were observed in the parietal (60-65%) and frontal cortices (52-58%). Compared to KCs without microarousal, pre-microarousal KCs were accompanied by increases (66%) in beta band power (16-30 â€‹Hz) in the motor cortex, which was present before the peak of the KC. In addition, spatial distribution of spectral power changes following each KC without microarousal revealed that certain brain regions were associated with increases in delta power (25-62%) or decreases in alpha/beta power (11-24%), suggesting a sleep-promoting pattern, whereas others were accompanied by increases of higher frequencies (12-27%), suggesting an arousal-related pattern. This study shows that KCs can be generated across widespread cortical areas. Interestingly, the motor cortex shows awake-like EEG activity before the onset of KCs followed by microarousals. Our findings also highlight region-specific sleep- or arousal-promoting responses following KCs, suggesting a dual role for the human KC.


Subject(s)
Arousal/physiology , Brain/physiology , Electrocorticography/methods , Adult , Brain Mapping/methods , Female , Humans , Male , Middle Aged , Scalp , Sleep Stages/physiology , Wakefulness/physiology , Young Adult
15.
Ann Neurol ; 85(4): 485-494, 2019 04.
Article in English | MEDLINE | ID: mdl-30786048

ABSTRACT

OBJECTIVE: To investigate whether high-frequency oscillations (HFOs) show spatiotemporal propagation and assess the relevance of the earliest oscillations in relation to the seizure onset zone (SOZ) and postsurgical outcome. METHODS: We retrospectively investigated the intracerebral electroencephalography (EEG) of patients who became seizure free after subsequent surgery. We marked HFOs during 1 hour of recordings. We calculated the time delay between pairs of channels as the median delay between their HFOs and constructed a time line of the delay of each channel with respect to the earliest channel (first source channel). A network was defined when a temporal order could be established among the channels based on the existence of statistically significant delays. RESULTS: Fifteen patients with good surgical outcome were included. We found ripple networks in all patients, and fast ripple networks in 9. For ripples, first source channels were found in a higher proportion in the SOZ than the rest of the network channels (15 of 27 [56%] versus 93 of 262 [35%]; p = 0.04). For both ripples and fast ripples, first source channels were resected more often that the rest of the network channels (ripples: 13 of 27 [48%] versus 65 of 262 [25%]; p = 0.01; fast ripples: 8 of 9 [89%] versus 17 of 40 [43%]; p = 0.002); channels with the highest rates of ripples and fast ripples were resected in a similar proportion. INTERPRETATION: These results demonstrate that interictal HFOs are organized in networks and indicate a possible need for the resection of first source channels. However, resecting them is not superior to resecting channels with highest rates of HFOs. Ann Neurol 2019;85:485-494.


Subject(s)
Electroencephalography/methods , Epilepsies, Partial/physiopathology , Epilepsies, Partial/surgery , Adolescent , Adult , Electroencephalography/trends , Epilepsies, Partial/diagnosis , Female , Follow-Up Studies , Humans , Male , Middle Aged , Treatment Outcome , Young Adult
16.
Curr Neurol Neurosci Rep ; 20(12): 59, 2020 10 30.
Article in English | MEDLINE | ID: mdl-33123826

ABSTRACT

PURPOSE OF REVIEW: Epilepsy associated with periventricular nodular heterotopia (PNH), a developmental malformation, is frequently drug-resistant and requires focal therapeutic intervention. Invasive EEG study is usually necessary to delineate the epileptogenic zone, but constructing an accurate hypothesis to define an appropriate electrode implantation scheme and the treatment is challenging. This article reviews recent studies that help understanding the epileptogenicity and potential therapeutic options in PNH. RECENT FINDINGS: New noninvasive diagnostic and intracerebral EEG analytic tools demonstrated that cortical hyperexcitability and aberrant connectivity (between nodules and cortices and among nodules) are likely mechanisms causing epilepsy in most patients. The deeply seated PNH, if epileptogenic, are ideal target for stereotactic ablative techniques, which offer concomitant ablation of multiple regions with relatively satisfactory seizure outcome. Advance in diagnostic and analytic tools have enhanced our understanding of the complex epileptogenicity in PNH. Development in stereotactic ablative techniques now offers promising therapeutic options for these patients.


Subject(s)
Epilepsy , Periventricular Nodular Heterotopia , Electroencephalography , Epilepsy/surgery , Epilepsy/therapy , Humans , Magnetic Resonance Imaging , Periventricular Nodular Heterotopia/complications , Periventricular Nodular Heterotopia/diagnostic imaging , Periventricular Nodular Heterotopia/surgery , Stereotaxic Techniques
17.
Brain Topogr ; 33(4): 545-557, 2020 07.
Article in English | MEDLINE | ID: mdl-32419099

ABSTRACT

This project aims to explore if stronger functional connectivity (FC) exists in the maximal BOLD response of EEG/fMRI analysis when it is concordant with seizure-onset-zone (SOZ). Twenty-six patients with drug-resistant focal epilepsy who had an EEG/fMRI and later underwent stereo-EEG implantation were included. Different types of IEDs were labeled in scalp EEG and IED-related maximal BOLD responses were evaluated separately, each constituting one study. After evaluating concordance between maximal BOLD and SOZ, twenty-seven studies were placed in the concordant group and eight in the discordant group. We evaluated the local connectivity and ipsilaterally distant connectivity difference between the maximal BOLD and the contralateral homotopic region. Significantly stronger local FC was found for the maximal BOLD in the concordant group (p < 0.05, Bonferroni corrected). 52% of the studies in the concordant group and 13% in the discordant group had a significant difference compared to healthy subjects (p < 0.05, uncorrected). The finding suggests that, when concordant with the SOZ, the maximal BOLD is more likely to have stronger local FC compared to its contralateral counterpart. This asymmetry in functional connectivity may help to noninvasively improve the specificity of EEG/fMRI analysis.


Subject(s)
Brain , Epilepsies, Partial , Magnetic Resonance Imaging , Brain/diagnostic imaging , Electroencephalography , Epilepsies, Partial/diagnostic imaging , Humans , Seizures/diagnostic imaging
18.
Neurobiol Dis ; 127: 545-553, 2019 07.
Article in English | MEDLINE | ID: mdl-30981828

ABSTRACT

Bidirectional interactions between sleep and epilepsy are known since antiquity, however only the introduction of the method of electroencephalography (EEG) in 1929 contributed to objectively investigate and further unravel these obvious clinical relationships. Despite the increasing evidence over the last century, certain aspects of epilepsy and sleep interactions are still incompletely or not well understood. This article discusses the influence of sleep on adult focal epilepsy as assessed objectively via EEG, and highlights new developments of the last decade regarding sleep microstructure and new markers of the epileptogenic zone such as high-frequency oscillations >80 Hz. It further describes evidence obtained from invasive intracranial EEG, as this is a unique method to assess directly cortical activity of superficial and deep structures of the human brain. Important achievements of the last decade were to unravel how epileptic activity is modulated by sleep, underlining the role of sleep slow waves to enhance epileptic activity, to demonstrate that seizure types are differently affected by sleep, and to show that sleep may be useful to better identify the epileptogenic zone for epilepsy surgery in drug-resistant epilepsy.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Epilepsies, Partial/physiopathology , Seizures/physiopathology , Sleep/physiology , Electroencephalography , Humans
19.
Neurobiol Dis ; 127: 374-381, 2019 07.
Article in English | MEDLINE | ID: mdl-30928645

ABSTRACT

OBJECTIVE: The distinction of hypersynchronous (HYP) and low-voltage fast (LVF) onset seizures in mesial temporal lobe epilepsy (MTLE) is well established, but classifying individual seizures and patients is often challenging. Experimental work indicates a strong association of HYP with fast ripples (250-500 Hz) and of LVF with ripples (80-250 Hz). We aimed to investigate whether analysis of high-frequency oscillations can be useful for characterizing the process of seizure generation in human MTLE patients. METHODS: We retrospectively compared 19 HYP and 14 LVF onset clinical seizures from ten and six consecutive MTLE patients with a predominance of the respective pattern. Five-second intervals of stereotactic EEGs from the seizure onset zone were selected, each representing the onset of HYP and LVF, the corresponding pre-ictal periods and, after the large spikes of HYP onsets, the LVF-like pattern that frequently followed. RESULTS: Pre-ictal fast ripple density and rate were higher for HYP than for LVF seizures (p < .05). This association was also found for initial ictal segments (p < .001). Furthermore, fast ripple density and rate were higher during the LVF-like pattern after HYP spikes than during LVF without preceding HYP (p < .01). Ripple density and rate in contrast did not differ significantly (p > .05). Fast ripple (p < .01) and ripple (p < .001) amplitude was higher during the LVF-like pattern after HYP spikes when compared to LVF without preceding HYP. SIGNIFICANCE: Our findings indicate a clear connection between experimental findings and human epilepsy. The association of fast ripples with HYP suggests that out-of-phase firing of different pyramidal cell clusters contributes specifically to generation of these seizures, rather than to LVF onsets. Both during and immediately before seizures, fast ripple analysis may facilitate classification.


Subject(s)
Brain Waves/physiology , Brain/physiopathology , Epilepsy, Temporal Lobe/physiopathology , Seizures/physiopathology , Adult , Electroencephalography , Female , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
20.
Hum Brain Mapp ; 40(1): 80-97, 2019 01.
Article in English | MEDLINE | ID: mdl-30259592

ABSTRACT

Optimal performance depends in part on the ability to inhibit the automatic processing of irrelevant information and also on the adjusting the level of control from one trial to the next. In this study, we investigated the spatio-temporal neural correlates of cognitive control using simultaneous functional magnetic resonance imaging and electroencephalography, while 22 participants (10 women) performed a numerical Stroop task. We investigated the spatial and temporal dynamic of the conflict adaptation effects (i.e., reduced interference on items that follow an incongruent stimulus compared to after a congruent stimulus). Joint independent component analysis linked the N200 component to activation of anterior cingulate cortex (ACC) and the conflict slow potential to widespread activations within the fronto-parietal executive control network. Connectivity analyses with psychophysiological interactions and dynamic causal modeling demonstrated coordinated engagement of the cognitive control network after the processing of an incongruent item, and this was correlated with better behavioral performance. Our results combined high spatial and temporal resolution to propose the following network of conflict adaptation effect and specify the time course of activation within this model: first, the anterior insula and inferior frontal gyrus are activated when incongruence is detected. These regions then signal the need for higher control to the ACC, which in turn activates the fronto-parietal executive control network to improve the performance on the next trial.


Subject(s)
Brain Mapping/methods , Conflict, Psychological , Evoked Potentials/physiology , Executive Function/physiology , Frontal Lobe/physiology , Gyrus Cinguli/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Adult , Electroencephalography , Female , Frontal Lobe/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Humans , Magnetic Resonance Imaging , Male , Nerve Net/diagnostic imaging , Parietal Lobe/diagnostic imaging , Stroop Test , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL