Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Proc Natl Acad Sci U S A ; 120(24): e2219031120, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37279263

ABSTRACT

Communication is a fundamental feature of animal societies and helps their members to solve the challenges they encounter, from exploiting food sources to fighting enemies or finding a new home. Eusocial bees inhabit a wide range of environments and they have evolved a multitude of communication signals that help them exploit resources in their environment efficiently. We highlight recent advances in our understanding of bee communication strategies and discuss how variation in social biology, such as colony size or nesting habits, and ecological conditions are important drivers of variation in communication strategies. Anthropogenic factors, such as habitat conversion, climate change, or the use of agrochemicals, are changing the world bees inhabit, and it is becoming clear that this affects communication both directly and indirectly, for example by affecting food source availability, social interactions among nestmates, and cognitive functions. Whether and how bees adapt their foraging and communication strategies to these changes represents a new frontier in bee behavioral and conservation research.


Subject(s)
Acclimatization , Ecosystem , Animals , Bees , Communication
2.
J Exp Biol ; 227(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38725404

ABSTRACT

Behavioural regulation in insect societies remains a fundamental question in sociobiology. In hymenopteran societies, the queen plays a crucial role in regulating group behaviour by affecting individual behaviour and physiology through modulation of worker gene expression. Honey bee (Apis mellifera) queens signal their presence via queen mandibular pheromone (QMP). While QMP has been shown to influence behaviour and gene expression of young workers, we know little about how these changes translate in older workers. The effects of the queen pheromone could have prolonged molecular impacts on workers that depend on an early sensitive period. We demonstrate that removal of QMP impacts long-term gene expression in the brain and antennae in foragers that were treated early in life (1 day post emergence), but not when treated later in life. Genes important for division of labour, learning, chemosensory perception and ageing were among those differentially expressed in the antennae and brain tissues, suggesting that QMP influences diverse physiological and behavioural processes in workers. Surprisingly, removal of QMP did not have an impact on foraging behaviour. Overall, our study suggests a sensitive period early in the life of workers, where the presence or absence of a queen has potentially life-long effects on transcriptional activity.


Subject(s)
Brain , Pheromones , Animals , Bees/physiology , Bees/genetics , Bees/drug effects , Pheromones/metabolism , Pheromones/pharmacology , Brain/metabolism , Brain/drug effects , Brain/physiology , Female , Arthropod Antennae/metabolism , Arthropod Antennae/physiology , Arthropod Antennae/drug effects , Feeding Behavior/drug effects , Gene Expression Regulation/drug effects
3.
J Anim Ecol ; 92(3): 580-593, 2023 03.
Article in English | MEDLINE | ID: mdl-36479701

ABSTRACT

Many bee species show flower constancy, that is, a tendency to visit flowers of one type during a foraging trip. Flower constancy is important for plant reproduction, but the benefits of constancy to bees is unclear. Social bees, which often use communication about food sources, show particularly strong flower constancy. We aimed to better understand the benefits of flower constancy in social bees and how these benefits depend on foraging conditions. We hypothesised that sharing social information increases the benefits of flower constancy because social foragers share information selectively about high-quality food sources, thereby reducing the need to sample alternatives. We developed an agent-based model that allowed us to simulate bee colonies with and without communication and flower constancy in different foraging environments. By varying key environmental parameters, such as food source numbers and reward size, we explored how the costs and benefits of flower constancy depend on the foraging landscape. Flower constancy alone performed poorly in all environments, while indiscriminate flower choice was often the most successful strategy. However, communication improved the performance of flower constant colonies considerably in most environments. This combination was particularly successful when high-quality food sources were abundant and competition was weak. Our findings help explain why social bees tend to be more flower constant than solitary bees and suggest that flower constancy can be an adaptive strategy in social bees. Simulations suggest that anthropogenic changes of foraging landscapes will have different effects on the foraging performance of bees that vary in flower constancy.


Subject(s)
Flowers , Reward , Bees , Animals , Pollination
4.
Mol Ecol ; 30(11): 2676-2688, 2021 06.
Article in English | MEDLINE | ID: mdl-33742503

ABSTRACT

Communication is essential for social animals, but deciding how to utilize information provided by conspecifics is a complex process that depends on environmental and intrinsic factors. Honey bees use a unique form of communication, the waggle dance, to inform nestmates about the location of food sources. However, as in many other animals, experienced individuals often ignore this social information and prefer to rely on prior experiences, i.e., private information. The neurosensory factors that drive the decision to use social information are not yet understood. Here we test whether the decision to use social dance information or private information is linked to gene expression differences in different parts of the nervous system. We trained bees to collect food from sugar water feeders and observed whether they utilize social or private information when exposed to dances for a new food source. We performed transcriptome analysis of four brain parts (11-16 bees per tissue type) critical for cognition: the subesophageal ganglion, the central brain, the mushroom bodies, and the antennal lobes but, unexpectedly, detected no differences between social or private information users. In contrast, we found 413 differentially expressed genes in the antennae, suggesting that variation in sensory perception mediates the decision to use social information. Social information users were characterized by the upregulation of biogenic amine genes, while private information users upregulated several genes coding for odour perception. These results highlight that decision-making in honey bees might also depend on peripheral processes of perception rather than higher-order brain centres of information integration.


Subject(s)
Animal Communication , Food , Animals , Bees/genetics , Brain , Gene Expression , Odorants
5.
J Theor Biol ; 526: 110762, 2021 10 07.
Article in English | MEDLINE | ID: mdl-33992692

ABSTRACT

Social animals often share information about the location of resources, such as a food source or a new nest-site. One well-studied communication strategy in ants is tandem running, whereby a leader guides a recruit to a resource. Tandem running is considered an example of animal teaching because a leader adjusts her behaviour and invests time to help another ant to learn the location of a resource more efficiently. Tandem running also has costs, such as waiting inside the nest for a leader and a reduced walking speed. Whether and when these costs outweigh the benefits of tandem running is not well understood. We developed an agent-based simulation model to investigate the conditions that favour communication by tandem running during foraging. We predicted that the spatio-temporal distribution of food sources, colony size and the ratio of scouts and recruits affect colony foraging success. Our results suggest that tandem running is favoured when food sources are hard to find, differ in energetic value and are long lasting. These results mirror the findings of simulations of honeybee communication. Scouts locate food sources faster than tandem followers in some environments, suggesting that tandem running may fulfil the criteria of teaching only in some situations. Furthermore, tandem running was only beneficial above a critical colony size threshold. Taken together, our model suggests that there is a considerable parameter range that favours colonies that do not use communication by tandem running, which could explain why many ants with small colony sizes forage solitarily.


Subject(s)
Ants , Running , Animals , Bees , Communication , Female , Learning
6.
Proc Biol Sci ; 287(1936): 20201950, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33049176

ABSTRACT

Honeybees can be directed to profitable food sources by following waggle dances performed by other bees. Followers can often choose between using this social information or relying on memories about food sources they have visited in the past, so-called private information. While the circumstances that favour the use of either social or private information have received considerable attention, still little is known about the neurophysiological basis of information use. We hypothesized that octopamine and dopamine, two biogenic amines with important functions in reward signalling and learning, affect dance use in honeybees. We orally administered octopamine and dopamine when bees collected food at artificial feeders and tested if this affected interest in dance information about a new food source. We predicted that octopamine reduces interest in dances and strengthens private information use via an increase in the perceived value of the previously exploited resource. Since dopamine has been shown to lower reward perception, we expected it to act in the opposite direction. Octopamine-treated foragers indeed followed 32% fewer dances than control bees and increased the use of private information. Conversely, dopamine-treated bees followed dances 15% longer than control bees, but surprisingly did not use social information more. Overall, our results suggest that biogenic amine signalling affects interactions among dancers and dance followers and, thus, information flow about high-quality food sources.


Subject(s)
Bees/physiology , Dopamine/metabolism , Octopamine/metabolism , Animal Communication , Animals , Social Behavior
7.
Biol Lett ; 16(6): 20200238, 2020 06.
Article in English | MEDLINE | ID: mdl-32516562

ABSTRACT

The biogenic amine octopamine (OA) is a key modulator of individual and social behaviours in honeybees, but its role in the other group of highly eusocial bees, the stingless bees, remains largely unknown. In honeybees, OA mediates reward perception and affects a wide range of reward-seeking behaviours. Thus, we tested the hypothesis that OA increases individual foraging effort and collective food source exploitation in the neotropical stingless bee Plebeia droryana. OA treatment caused a significant increase in the number of bees at artificial sucrose feeders and a 1.73-times higher individual foraging frequency. This effect can be explained by OA lowering the sucrose response threshold and, thus, increasing the perceived value of the food source. Our results demonstrate that, similar to its effects on honeybees, OA increases both individual and collective food source exploitation in P. droryana. This suggests that, despite having evolved many complex behaviours independently, OA might have similar regulatory effects on foraging behaviours in the two groups of highly eusocial bees.


Subject(s)
Feeding Behavior , Octopamine , Animals , Bees , Reward , Social Behavior , Sucrose
8.
J Exp Biol ; 222(Pt 10)2019 05 13.
Article in English | MEDLINE | ID: mdl-31064857

ABSTRACT

Plants and pollinators form beneficial relationships, with plants offering resources in return for pollination services. Some plants, however, add compounds to nectar to manipulate pollinators. Caffeine is a secondary plant metabolite found in some nectars that affects foraging in pollinators. In honeybees, caffeine increases foraging and recruitment to mediocre food sources, which might benefit the plant, but potentially harms the colonies. For the largest group of social bees, the stingless bees, the effect of caffeine on foraging behaviour has not been tested yet, despite their importance for tropical ecosystems. More generally, recruitment and foraging dynamics are not well understood in most species. We examined whether caffeine affects the foraging behaviour of the stingless bee Plebeia droryana, which frequently visits plants that produce caffeinated nectar and pollen. We trained bees to food sources containing field-realistic concentrations of sugar and caffeine. Caffeine did not cause P. droryana to increase foraging frequency and persistence. We observed P. droryana recruiting to food sources; however, this behaviour was also not affected by caffeine. Instead we found that higher sugar concentrations caused bees to increase foraging effort. Thus, unlike in other pollinators, foraging behaviour in this stingless bee is not affected by caffeine. As the Brazilian P. droryana population that we tested has been exposed to coffee over evolutionary time periods, our results raise the possibility that it may have evolved a tolerance towards this central nervous system stimulant. Alternatively, stingless bees may show physiological responses to caffeine that differ from those of other bee groups.


Subject(s)
Bees/physiology , Biological Variation, Individual , Caffeine/metabolism , Sugars/metabolism , Animals , Appetitive Behavior , Brazil , Feeding Behavior , Social Behavior
9.
J Evol Biol ; 31(12): 1843-1851, 2018 12.
Article in English | MEDLINE | ID: mdl-30242940

ABSTRACT

Reproductive division of labour is a defining feature of insect societies. Stingless bees (Meliponini) are an interesting exception among the highly eusocial insects in that workers of many species contribute significantly to the production of males. Since workers remain sterile in other species of this large tropical tribe, it has been hypothesized that, in the latter species, ancestral queens have won the conflict over who produces the males. The fact that sterile workers of some species lay trophic eggs to feed the queen and display ritualized behaviours towards her during oviposition has been interpreted as an evolutionary relic of this ancient conflict. Here, I used ancestral state estimation to test whether worker reproduction is indeed the ancestral condition and worker sterility a derived state in stingless bees. Contrary to this hypothesis, data suggest that trophic egg laying was the ancestral condition, whereas selfish worker reproduction in queenright colonies evolved subsequently during stingless bee diversification. The appearance of worker reproduction in queenright conditions was tightly linked to the laying of trophic eggs, which suggests that having activated ovaries in queen presence facilitates the evolution of worker reproduction. Worker reproduction is also linked to brood cell architecture, but surprisingly not to colony size or queen-worker dimorphism. The reason for this association between brood cell architecture and worker oviposition is currently unknown. These results suggest that trophic eggs are not a relic of an ancient conflict, but a sign of overlapping interests between the queen and workers about who produces the males.


Subject(s)
Bees/genetics , Bees/physiology , Biological Evolution , Oviposition/genetics , Social Behavior , Animals , Models, Biological , Oviposition/physiology
10.
Biol Lett ; 13(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28978757

ABSTRACT

Many ant and termite colonies are defended by soldiers with powerful mandibles or chemical weaponry. Recently, it was reported that several stingless bee species also have soldiers for colony defence. These soldiers are larger than foragers, but otherwise lack obvious morphological adaptations for defence. Thus, how these soldiers improve colony fitness is not well understood. Robbing is common in stingless bees and we hypothesized that increased body size improves the ability to recognize intruders based on chemosensory cues. We studied the Neotropical species Tetragonisca angustula and found that large soldiers were better than small soldiers at recognizing potential intruders. Larger soldiers also had more olfactory pore plates on their antennae, which is likely to increase their chemosensory sensitivity. Our results suggest that improved enemy recognition might select for increased guard size in stingless bees.


Subject(s)
Bees/physiology , Nesting Behavior , Sensilla/anatomy & histology , Aggression , Animals , Bees/anatomy & histology , Body Size , Smell , Social Behavior
11.
Am Nat ; 187(1): 120-9, 2016 Jan.
Article in English | MEDLINE | ID: mdl-27277408

ABSTRACT

The differentiation of workers into morphological subcastes (e.g., soldiers) represents an important evolutionary transition and is thought to improve division of labor in social insects. Soldiers occur in many ant and termite species, where they make up a small proportion of the workforce. A common assumption of worker caste evolution is that soldiers are behavioral specialists. Here, we report the first test of the "rare specialist" hypothesis in a eusocial bee. Colonies of the stingless bee Tetragonisca angustula are defended by a small group of morphologically differentiated soldiers. Contrary to the rare specialist hypothesis, we found that soldiers worked more (+34%-41%) and performed a greater variety of tasks (+23%-34%) than other workers, particularly early in life. Our results suggest a "rare elite" function of soldiers in T. angustula, that is, that they perform a disproportionately large amount of the work. Division of labor was based on a combination of temporal and physical castes, but soldiers transitioned faster from one task to the next. We discuss why the rare specialist assumption might not hold in species with a moderate degree of worker differentiation.


Subject(s)
Adaptation, Biological/physiology , Bees/physiology , Behavior, Animal , Social Behavior , Animals , Bees/anatomy & histology
12.
Ecology ; 97(2): 417-26, 2016 Feb.
Article in English | MEDLINE | ID: mdl-27145616

ABSTRACT

Many colonial animals rely for their defense on a soldier caste. Adaptive colony demography theory predicts that colonies should flexibly adjust the investment in different worker castes depending on the colony needs. For example, colonies should invest more in defensive workers (e.g., soldiers) in dangerous environments. However, evidence for this prediction has been mixed. We combined descriptive and experimental approaches to examine whether defensive investment and worker size are adjusted to local ecology in the only known bee with polymorphic workers, Tetragonisca angustula. Colonies of this species are defended by a morphologically specialized soldier caste. Our study included three populations that differed in the density of food competition and the occurrence of a parasitic robber bee. We found that colonies coexisting with robber bees had on average 43% more soldiers defending the nest entrance, while colonies facing stronger foraging competition had soldiers that were -6-7% smaller. We then experimentally relocated colonies to areas with different levels of competition. When released from intense food competition, body sizes of guards and foragers increased. After introducing chemical robber bee cues at nest entrances, we found both a short-term and a long-term up-regulation of the number of soldiers defending the colony. Active soldier numbers remained high after the experiment for a duration equivalent to 2-3 worker life spans. How information about past parasite threat is stored in the colony is currently unknown. In summary, T. angustula adjusts both the number and the body size of active soldiers to local ecological conditions. Competitor density also affects forager (or minor) size, an important colony trait with potential community ecological consequences. Our study supports adaptive colony demography theory in a eusocial bee and highlights the importance of colony threats and competition as selective forces shaping colony phenotype.


Subject(s)
Bees/physiology , Bees/parasitology , Behavior, Animal , Social Behavior , Animals , Nesting Behavior , Species Specificity
13.
Annu Rev Entomol ; 60: 581-99, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25386724

ABSTRACT

Trail pheromones do more than simply guide social insect workers from point A to point B. Recent research has revealed additional ways in which they help to regulate colony foraging, often via positive and negative feedback processes that influence the exploitation of the different resources that a colony has knowledge of. Trail pheromones are often complementary or synergistic with other information sources, such as individual memory. Pheromone trails can be composed of two or more pheromones with different functions, and information may be embedded in the trail network geometry. These findings indicate remarkable sophistication in how trail pheromones are used to regulate colony-level behavior, and how trail pheromones are used and deployed at the individual level.


Subject(s)
Hymenoptera/physiology , Isoptera/physiology , Pheromones/metabolism , Animals , Social Behavior
14.
Proc Natl Acad Sci U S A ; 109(4): 1182-6, 2012 Jan 24.
Article in English | MEDLINE | ID: mdl-22232688

ABSTRACT

Division of labor among workers is common in insect societies and is thought to be important in their ecological success. In most species, division of labor is based on age (temporal castes), but workers in some ants and termites show morphological specialization for particular tasks (physical castes). Large-headed soldier ants and termites are well-known examples of this specialization. However, until now there has been no equivalent example of physical worker subcastes in social bees or wasps. Here we provide evidence for a physical soldier subcaste in a bee. In the neotropical stingless bee Tetragonisca angustula, nest defense is performed by two groups of guards, one hovering near the nest entrance and the other standing on the wax entrance tube. We show that both types of guards are 30% heavier than foragers and of different shape; foragers have relatively larger heads, whereas guards have larger legs. Low variation within each subcaste results in negligible size overlap between guards and foragers, further indicating that they are distinct physical castes. In addition, workers that remove garbage from the nest are of intermediate size, suggesting that they might represent another unrecognized caste. Guards or soldiers are reared in low but sufficient numbers (1-2% of emerging workers), considering that <1% usually perform this task. When challenged by the obligate robber bee Lestrimelitta limao, an important natural enemy, larger workers were able to fight for longer before being defeated by the much larger robber. This discovery opens up opportunities for the comparative study of physical castes in social insects, including the question of why soldiers appear to be so much rarer in bees than in ants or termites.


Subject(s)
Adaptation, Biological/physiology , Bees/anatomy & histology , Bees/physiology , Hierarchy, Social , Nesting Behavior/physiology , Social Behavior , Agonistic Behavior/physiology , Animals , Body Weights and Measures , Brazil , Linear Models , Observation
15.
J Exp Biol ; 216(Pt 2): 188-97, 2013 Jan 15.
Article in English | MEDLINE | ID: mdl-22972897

ABSTRACT

Ants are central place foragers and use multiple information sources to navigate between the nest and feeding sites. Individual ants rapidly learn a route, and often prioritize memory over pheromone trails when tested on a simple trail with a single bifurcation. However, in nature, ants often forage at locations that are reached via more complex routes with multiple trail bifurcations. Such routes may be more difficult to learn, and thus ants would benefit from additional information. We hypothesized that trail pheromones play a more significant role in ant foraging on complex routes, either by assisting in navigation or route learning or both. We studied Lasius niger workers foraging on a doubly bifurcating trail with four end points. Route learning was slower and errors greater on alternating (e.g. left-right) versus repeating routes (e.g. left-left), with error rates of 32 and 3%, respectively. However, errors on alternating routes decreased by 30% when trail pheromone was present. Trail pheromones also aid route learning, leading to reduced errors in subsequent journeys without pheromone. If an experienced forager makes an error when returning to a food source, it reacts by increasing pheromone deposition on the return journey. In addition, high levels of trail pheromone suppress further pheromone deposition. This negative feedback mechanism may act to conserve pheromone or to regulate recruitment. Taken together, these results demonstrate further complexity and sophistication in the foraging system of ant colonies, especially in the role of trail pheromones and their relationship with learning and the use of private information (memory) in a complex environment.


Subject(s)
Ants/physiology , Pheromones/physiology , Animals , Environment , Feeding Behavior , Memory
16.
J Theor Biol ; 327: 23-33, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23454081

ABSTRACT

Task-partitioning is an important organisational principle in insect colonies and is thought to increase colony efficiency. In task-partitioning, tasks such as the collection of resources are divided into subtasks in which the material is passed from one worker to another. Previous models have assumed that worker-worker interactions are random, but experimental evidence suggests that receivers can have preferences to handle familiar materials. We used an agent-based simulation model to explore how non-random interactions during task-partitioning with direct transfer affect colony work efficiency. Because task-partitioning also allows receivers and donors to acquire foraging related information we analysed the effect of non-random interactions on informative interaction patterns. When receivers non-randomly rejected donors offering certain materials, donors overall experienced increased time delays, hive stay durations and a decreased number of transfer partners. However, the number of transfers was slightly increased, which can improve the acquisition and quality of information for donors. When receivers were non-randomly attracted to donors offering certain materials, donors experienced reduced transfer delays, hive stay durations and an increased number of simultaneous receivers. The number of transfers is slightly decreased. The effects of the two mechanisms "non-random rejection" and "non-random attraction" are biggest if the number of foragers and receivers is balanced. In summary, our results show that colony ergonomics are improved if receivers do not reject donors and if mechanisms exist that help receivers detect potential donors, such as learning the odour of the transferred food. Finally, our simulations suggest that non-random interactions can potentially affect the foraging patterns of colonies in changing environments.


Subject(s)
Behavior, Animal/physiology , Insecta/physiology , Models, Biological , Animal Communication , Animals , Appetitive Behavior/physiology , Bees/physiology , Cooperative Behavior , Group Processes
17.
Curr Opin Insect Sci ; 58: 101057, 2023 08.
Article in English | MEDLINE | ID: mdl-37230412

ABSTRACT

Stingless bees are a diverse and ecologically important group of pollinators in the tropics. Division of labour allows bee colonies to meet the various demands of their social life, but has been studied in only ∼3% of all described stingless bee species. The available data suggest that division of labour shows both parallels and striking differences compared with other social bees. Worker age is a reliable predictor of worker behaviour in many species, while morphological variation in body size or differences in brain structure are important for specific worker tasks in some species. Stingless bees provide opportunities to confirm general patterns of division of labour, but they also offer prospects to discover and study novel mechanisms underlying the different lifestyles found in eusocial bees.


Subject(s)
Behavior, Animal , Brain , Bees , Animals , Body Size
18.
Curr Biol ; 32(24): 5390-5397.e3, 2022 12 19.
Article in English | MEDLINE | ID: mdl-36400034

ABSTRACT

Bees are important pollinators of wild and agricultural plants1,2,3,4,5 and there is increasing evidence that many bee populations decline due to a combination of habitat loss, climate change, pesticides, and other anthropogenic effects.6,7,8,9,10,11 One trait that shapes both their role in plant reproduction12,13 and their exposure to anthropogenic stressors is the distance at which bees forage. It has been suggested that bee sociality14 and diet15 affect bee foraging ranges, but how these traits and their potential interactions drive foraging ranges remains unclear. We analyzed flight distance data from 90 bee species and developed an agent-based model to test how social, dietary, and environmental factors affect foraging ranges. We confirm that bee sociality is positively associated with foraging range, with average-sized social bees foraging up to 3 times farther from the nest than size-matched solitary bees. A comparative analysis of social bees and computer simulations shows that foraging distances increase with colony size, supporting the hypothesis that greater foraging distances are an emergent property of increasing colony sizes in a food-limited environment. Flower constancy and communication, two traits often found in social bees, synergistically increase foraging distances further in many simulated environments. Diet breadth (oligolectic versus polylectic diet), on the other hand, does not appear to affect foraging ranges in solitary bees. Our findings suggest that multiple traits linked to bee sociality explain why social bees have greater foraging ranges. This has implications for predicting pollination services and for developing effective conservation strategies for bees and isolated plant populations.15,16,17,18,19.


Subject(s)
Ecosystem , Pollination , Bees , Animals , Flowers , Phenotype , Food
19.
J Exp Biol ; 214(Pt 8): 1397-402, 2011 Apr 15.
Article in English | MEDLINE | ID: mdl-21430217

ABSTRACT

As first described by Aristotle, honey bee (Apis mellifera) workers show a strong tendency to visit flowers of only one type during a foraging trip. It is known that workers rapidly learn a flower colour when rewarded with artificial nectar (sucrose solution). However, some previous studies report that the degree of constancy after training is unaffected by reward quantity and quality when bees are tested in an array of artificial flowers of two easily distinguished colours, such as blue and yellow. One possible reason for this surprising result is that large reward volumes were compared. This is likely to mask the abilities of foragers to make adaptive decisions under more realistic conditions. To test this possibility, we offered untrained honey bee workers ecologically relevant rewards (0.5, 1 or 2 µl of 0.5 or 1 mol l(-1) sucrose solution) on one or two consecutive yellow or blue artificial flowers and then recorded which flowers the bees subsequently landed on in an array of 40 empty flowers. The results showed that an increase in all three factors (volume, concentration and number of rewards) significantly increased constancy (proportion of visits to flowers of the trained colour) and persistence (number of flowers visited) during the foraging bout. Constancy for the least rewarding situation was 75.9% compared with 98.6% for the most rewarding situation. These results clearly show that honey bee workers do become more constant to blue or yellow with increasing nectar rewards, provided that the rewards used are ecologically realistic. As the most rewarding conditions led to nearly 100% constancy, further reward increases during training would not have been able to further increase constancy. This explains why previous studies comparing large rewards found no effect of reward on constancy.


Subject(s)
Bees , Behavior, Animal/physiology , Ecology , Feeding Behavior/physiology , Flowers , Reward , Animals , Color , Plant Nectar
20.
Biol Lett ; 7(4): 521-4, 2011 Aug 23.
Article in English | MEDLINE | ID: mdl-21325309

ABSTRACT

Insect societies integrate many information sources to organize collective activities such as foraging. Many ants use trail pheromones to guide foragers to food sources, but foragers can also use memories to find familiar locations of stable food sources. Route memories are often more accurate than trail pheromones in guiding ants, and are often followed in preference to trail pheromones when the two conflict. Why then does the system expend effort in producing and acquiring seemingly redundant and low-quality information, such as trail pheromones, when route memory is available? Here we show that, in the ant Lasius niger, trail pheromones and route memory act synergistically during foraging; increasing walking speed and straightness by 25 and 30 per cent, respectively, and maintaining trail pheromone deposition, but only when used together. Our results demonstrate a previously undescribed major role of trail pheromones: to complement memory by allowing higher confidence in route memory. This highlights the importance of multiple interacting information sources in the efficient running of complex adaptive systems.


Subject(s)
Ants/physiology , Animals , Feeding Behavior , Memory , Pheromones/physiology , Walking
SELECTION OF CITATIONS
SEARCH DETAIL