Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Chemistry ; : e202402242, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39133568

ABSTRACT

A series of D-π-A alkynylphosphonium salts with different linker between donor and acceptor groups was used to synthesize two series of trans-bis-alkynylphosphonium Pt(II) complexes with different ancillary ligands (triphenylphosphine, P series, and cyanide, CN series). The nature of the ancillary ligand manages the overall charge and emission properties of the complexes obtained. In addition, the variation of the linker in alkynylphosphonium ligands allows fine-tuning the luminescence wavelength. Dicationic series P is unstable in solution under UV excitation, whereas in the solid state, these complexes are the first example of phosphorescent trans-phosphine-bis-alkynyl Pt(II) compounds. Neutral series CN demonstrates bright emission in solution, including dual emission for 2CN complex with biphenyl linker in alkynylphosphonium ligand. However, in the solid state for the CN series drastic decrease in the emission quantum yield compared to the P series was observed. DFT calculations reveal the complicated emission nature for the both P and CN series with various contributions of 3ILCT, 3LLCT and 3MLCT states. However, in the naphthyl-containing derivatives 3P and 3CN, the dominating 3LC character with some admixture of CT states is postulated.

2.
Inorg Chem ; 63(38): 17548-17560, 2024 Sep 23.
Article in English | MEDLINE | ID: mdl-39239665

ABSTRACT

Two series of heteroleptic monoalkynylphosphonium Pt(II) complexes decorated with 2,2':6',2''-terpyridine (terpy, N series) and 6-phenyl-2,2'-bipyridine (phbpy, C series) ligands, were prepared and characterized by spectroscopic methods. The complexes obtained exhibit triplet emission in solution, and the characteristics inside the series depend on the nature of the alkynylphosphonium ligand. The description of electronic transitions responsible for energy absorption and emission in discrete Pt(II) complexes was made on the basis of a detailed analysis of the results of DFT calculations, and has shown to involve MLCT, ILCT, and LLCT transitions. The complexes of both series exhibit triplet solid-state luminescence with parameters that also depend on the composition of the complexes, and the analysis of the experimental data indicates the realization of LC, MLCT, MMLCT, and MC transitions due to Pt⋯Pt metallophilic interactions and matrix rigidity. It was shown that the anion variation leads to a significant difference in the photophysical characteristics of the N complexes, which exhibit a smooth dependence of the luminescent properties on the anion size. Using quantum chemical modeling, it is demonstrated how the anion size influences the Pt⋯Pt distance in the solid state.

3.
Inorg Chem ; 62(44): 18056-18068, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37886882

ABSTRACT

A series of heteroleptic bis-alkynyl-diimine mononuclear Pt(II) complexes with alkynylphosphonium and di-tert-butyl-2,2'-bipyridine (dtbpy) ligands have been prepared and characterized by spectroscopic methods and single-crystal XRD. The Pt(II) complexes obtained in the present study demonstrate triplet emission in solution, which originates from 3MLCT/3LC states where the nature of the π-conjugated linker in the alkynylphosphonium ligand manages the contributions of each transition, and this conclusion is supported by DFT calculations. Additionally, the presence of the phosphonium group connected to alkynyl through the π-conjugated linker enhances nonlinear optical properties of the Pt(II) complexes increasing two-photon absorption cross section up to 400 GM. In the solid state, the Pt(II) complexes demonstrate emission that is attributed to 3MMLCT transitions due to the presence of Pt-Pt metallophilic interactions, and the reversible assembly and disassembly of these interactions by grinding and solvent treatment are responsible for the mechanochromic luminescence. It has been experimentally shown that stimuli-responsive emission of the Pt(II) complexes is the result of a "monomer/dimer" transformation; this conclusion is confirmed by DFT calculations for discrete complexes and different dimers with or without Pt-Pt interactions.

4.
Inorg Chem ; 62(13): 5123-5133, 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-36939095

ABSTRACT

A series of compounds P1-P4 bearing terminal alkynyl sites connected with a phosphonium group via different π-conjugated linkers have been synthesized. The compounds themselves are efficient push-pull emitters and exhibit bright fluorescence in blue and near-UV regions. P1-P4 were used as alkynyl ligands to obtain a series of homoleptic bis-alkynyl Au(I) complexes 1-4. The complexes demonstrate bright phosphorescence and dual emission with dominating phosphorescence (2-4). Terphenyl derivative complex 3 exhibits warm white emission in DMSO solution and pure white emission in PMMA films. Time-dependent density functional theory calculations have shown that the T1 excited state has a hybrid MLCT/ILCT nature with a dominant contribution of charge transfer across a ligand-centered "D-π-A" system. The variation of linker allows tuning the effect of intermolecular charge transfer and thus changing the electronic and photophysical properties of the organogold "D-π-A" system. The results presented unambiguously display the advances of the conception of organometallic "D-π-A" construction.

5.
Inorg Chem ; 61(30): 11629-11638, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35786911

ABSTRACT

The manipulation of the photophysical properties of molecular emitters can be realized by composing the close environment of the metal center with the "heavier pnictogen atom" effect. Replacing a nitrogen atom with a heavier phosphorus atom in otherwise isostructural molecular systems results in a significant change of the photophysical parameters. Herein, we report on the synthesis of four pairs of novel phosphinine-based and isostructural diimine-based Cu(I) complexes, which feature peculiar photophysical properties, and show how these parameters depend on the "heavier pnictogen atom" effect. The obtained Cu(I) complexes show triplet luminescence with MLCT character, which was investigated by means of spectroscopic and computational methods. It has been found that the photophysical properties of the coordination compounds show a dependency on the rigidity of the ancillary phosphine ligand in an unexpected manner. Replacing the nitrogen atom with a heavier phosphorus atom in otherwise isostructural molecular systems results in a significant change in emission energy and especially in the lifetime of the excited state. The results obtained demonstrate an efficient approach to the design of emissive molecular materials, which allows the construction of luminescent complexes with controlled photophysical properties.

6.
Inorg Chem ; 61(28): 10925-10933, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-35775806

ABSTRACT

We report herein a family of polynuclear complexes, [Au@Ag4(Py3P)4]X5 and [Au@Cu4(Py3P)4]X5 [X = NO3, ClO4, OTf, BF4, SbF6], containing unprecedented Au-centered Ag4 and Cu4 tetrahedral cores supported by tris(2-pyridyl)phosphine (Py3P) ligands. The [Au@Ag4]5+ clusters are synthesized via controlled substitution of the central Ag(I) ion in all-silver [Ag@Ag4]5+ precursors by the reaction with Au(tht)Cl, while the [Au@Cu4]5+ cluster is assembled through the treatment of a pre-organized [Au(Py3P)4]+ metallo-ligand with 4 equiv of a Cu(I) source. The structure of the Au@M4 clusters has been experimentally and theoretically investigated to reveal very weak intermolecular Au-M metallophilic interactions. At ambient temperature, the designed compounds emit a modest turquoise-to-yellow luminescence with microsecond lifetimes. Based on the temperature-dependent photophysical experiments and DFT/TD-DFT computations, the emission observed has been assigned to an MLCT or LLCT type depending on composition of the cluster core.

7.
Molecules ; 27(19)2022 Oct 01.
Article in English | MEDLINE | ID: mdl-36235030

ABSTRACT

CuAAC (Cu catalyzed azide-alkyne cycloaddition) click-reaction is a simple and powerful method for the post-synthetic modification of organometallic complexes of transition metals. This approach allows the selective introduction of additional donor sites or functional groups to the periphery of the ligand environment. This is especially important if a metalloligand with free donor sites, which are of the same nature as the primary site for the coordination of the primary metal, has to be created. The concept of post-synthetic modification of organometallic complexes by click-reaction is relatively recent and the currently available experimental material does not yet allow us to identify trends and formulate recommendations to address specific problems. In the present study, we have applied the CuAAC reaction for the post-synthetic modification of diimine mononuclear complexes Re(I), Pt(II) and Ir(III) with C≡C bonds at the periphery of the ligand environment and demonstrated that click-chemistry is a powerful tool for the tunable chemical post-synthetic modification of coordination compounds.


Subject(s)
Azides , Click Chemistry , Alkynes/chemistry , Azides/chemistry , Catalysis , Copper/chemistry , Cycloaddition Reaction , Ligands
8.
Molecules ; 27(7)2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35408648

ABSTRACT

In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.


Subject(s)
Coordination Complexes , Coordination Complexes/chemistry , Copper/chemistry , Ligands , Luminescence , Spectrum Analysis
9.
J Am Chem Soc ; 143(37): 15045-15055, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34491736

ABSTRACT

Heterodentate phosphines containing anionic organophosphorus groups remain virtually unexplored ligands in the coordination chemistry of coinage metals. A hybrid phosphine-phosphine oxide (o-Ph2PC6H4)2P(O)H (HP3O) readily forms the disilver complex [Ag2(P3O)2] (1) upon deprotonation of the (O)P-H fragment. Due to the electron-rich nature, the anionic phosphide oxide unit in 1 takes part in efficient intermolecular hydrogen bonding, which has an unusual and remarkably strong impact on the photoluminescence of 1, changing the emission from red (644 nm) to green-yellow (539 nm) in the solid. The basicity of the R2(O)P- group and its affinity for both inter- and intramolecular donor-acceptor interactions allow converting 1 into hydrohalogenated (2, 3) and boronated (4) derivatives, which reveal a gradual hypsochromic shift of luminescence, reaching the wavelength of 489 nm. Systematic variable-temperature analysis of the excited state properties suggests that thermally activated delayed fluorescence is involved in the emission process. The long-lived excited states for 1-4, the energy of which is largely regulated by means of the phosphide oxide unit, are potentially suitable for triplet energy transfer photocatalysis. With the highest T1 energy among 1-4, complex 4 demonstrates excellent photocatalytic activity in a [2+2] cycloaddition reaction, which has been realized for the first time for silver(I) compounds.

10.
Chemistry ; 27(5): 1787-1794, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-32970903

ABSTRACT

Luminescent cyclometalated complexes [M(C^N^N)CN] (M=Pt, Pd; HC^N^N=pyridinyl- (M=Pt 1, Pd 5), benzyltriazolyl- (M=Pt 2), indazolyl- (M=Pt 3, Pd 6), pyrazolyl-phenylpyridine (M=Pt 4)) decorated with cyanide ligand, have been explored as nucleophilic building blocks for the construction of halogen-bonded (XB) adducts using IC6 F5 as an XB donor. The negative electrostatic potential of the CN group afforded CN⋅⋅⋅I noncovalent interactions for platinum complexes 1-3; the energies of XB contacts are comparable to those of metallophilic bonding according to QTAIM analysis. Embedding the chromophore units into XB adducts 1-3⋅⋅⋅IC6 F5 has little effect on the charge distribution, but strongly affects Pt⋅⋅⋅Pt bonding and π-stacking, which lead to excited states of MMLCT (metal-metal-to-ligand charge transfer) origin. The energies of these states and the photoemissive properties of the crystalline materials are primarily determined by the degree of aggregation of the luminophores via metal-metal interactions. The adduct formation depends on the nature of the metal and the structure of the metalated ligand, the variation of which can yield dynamic XB-supported systems, exemplified by thermally regulated transition 3↔3⋅⋅⋅IC6 F5 .

11.
Inorg Chem ; 60(12): 8777-8789, 2021 Jun 21.
Article in English | MEDLINE | ID: mdl-34097403

ABSTRACT

Cyclometalated complexes [M(Phbpy)(CN)] (HPhbpy = 6-phenyl-2,2'-bipyridine) of the group 10 metals (Ni, Pd, and Pt) bearing a carbanionic -C∧N∧N pincer ligand were synthesized and studied in a combined experimental and computational DFT approach. All three complexes were crystallographically characterized showing closely packed dimers with head-to-tail stacking and short metal-metal contacts in the solid state. The computational models for geometries, excited states, and electronic transitions addressed both monomeric (Ni-mono, Pd-mono, and Pt-mono) and dimeric (Ni-dim, Pd-dim, and Pt-dim) entities. Photophysical properties and excited state dynamics of all title complexes were investigated in solution and in the solid at 298 and 77 K. [Ni(Phbpy)(CN)] and [Pd(Phbpy)(CN)] are virtually nonemissive in solution at 298 K, whereas [Pt(Phbpy)(CN)] shows phosphorescence in CH2Cl2 (DCM) solution (λem = 562 nm) stemming from a mixed 3MLCT/ILCT (metal-to-ligand charge transfer/intraligand charge transfer) state. At 77 K in a glassy frozen DCM:MeOH matrix, [Pd(Phbpy)(CN)] shows a remarkable emission (λem = 571 nm) with a photoluminescence quantum yield reaching almost unity, whereas [Ni(Phbpy)(CN)] is again nonemissive. Calculations on the monomeric models M-mono show that low-lying metal-centered states (MC, i.e., d-d* configuration) with dissociative character quench the photoluminescence. In the solid state, the complexes [M(Phbpy)(CN)] show defined photoluminescence bands (λem = 561 nm for Pd and 701 nm for Pt). Calculations on the dimeric models M-dim shows that the axial M···M interactions alter the photophysical properties of Pd-dim and Pt-dim toward MMLCT (metal-metal-to-ligand charge transfer) excited states with Pd-dim showing temperature-dependent emission lifetimes, suggesting thermally activated delayed fluorescence, whereas Pt-dim displayed phosphorescence with excimeric character. The metal-metal interactions were analyzed in detail with the quantum theory of atoms in molecules approach.

12.
Inorg Chem ; 60(24): 18715-18725, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34823354

ABSTRACT

A series of organometallic complexes containing an alkynylphosphinegold(I) fragment and a phenylene-terpyridine moiety connected together by flexible linker have been prepared using the specially designed terpyridine ligands. The compounds were studied crystallographically to reveal that all of them contain a linearly coordinated Au(I) atom and a free terpyridine moiety. The different orientations of the molecules relative to each other in the solid state determine the multiple noncovalent interactions such as antiparallel ππ stacking, CH-π, and CH-Au, but no aurophilic interactions are realized. The organometallic Au(I) complexes obtained show fluorescence in the solution and dual singlet-triplet emission in the solid state. This means that their photophysical behavior is determined by both intermolecular lattice-defined interactions and Au(I) atom introduction. Density functional theory computational analysis supported the assignment of emission to intraligand electronic transitions only inside the phenylene-terpyridine part with no Au(I) involved. In addition, a study of the nature of the excited states for the "dimer" with an antiparallel orientation of the terpyridine fragment showed that this orientation leads to the generation of abstracted singlet and triplet states, lowering their energy in comparison with the monomer complex. Thus, the complexes obtained can be qualified as examples of Au(I)-containing organometallic aggregation-induced-emission luminogens.

13.
Molecules ; 26(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34833958

ABSTRACT

This study focuses on the synthesis of hybrid luminescent polysiloxanes and silicone rubbers grafted by organometallic rhenium(I) complexes using Cu(I)-catalyzed azido-alkyne cycloaddition (CuAAC). The design of the rhenium(I) complexes includes using a diimine ligand to create an MLCT luminescent center and the introduction of a triple C≡C bond on the periphery of the ligand environment to provide click-reaction capability. Poly(3-azidopropylmethylsiloxane-co-dimethylsiloxane) (N3-PDMS) was synthesized for incorporation of azide function in polysiloxane chain. [Re(CO)3(MeCN)(5-(4-ethynylphenyl)-2,2'-bipyridine)]OTf (Re1) luminescent complex was used to prepare a luminescent copolymer with N3-PDMS (Re1-PDMS), while [Re(CO)3Cl(5,5'-diethynyl-2,2'-bipyridine)] (Re2) was used as a luminescent cross-linking agent of N3-PDMS to obtain luminescent silicone rubber (Re2-PDMS). The examination of photophysical properties of the hybrid polymer materials obtained show that emission profile of Re(I) moiety remains unchanged and metallocenter allows to control the creation of polysiloxane-based materials with specified properties.

14.
Inorg Chem ; 59(22): 16122-16126, 2020 Nov 16.
Article in English | MEDLINE | ID: mdl-33103900

ABSTRACT

The fully oxidized Lindqvist-type hexavanadate compounds decorated by phosphine-derivatized Au(I) moieties oriented in a transoid fashion (n-Bu4N)2[V6O13{(OCH2)3CCH2(N3C2C6H5)AuP(C6H4OMe)3}2] (POMNAu) and (n-Bu4N)2[V6O13{(OCH2)3CCH2OCH2(C2N3H)AuP(C6H4OMe)3}2] (POMCAu) have been prepared by azide-alkyne cycloaddition reactions and characterized by various techniques, including NMR, IR, and UV/vis spectroscopy and electrospray ionization mass spectrometry. Electronic structure calculations unveil the potential of these model hybrid junctions for application in controlled charge-transport experiments on substrate surfaces.

15.
Inorg Chem ; 59(1): 244-253, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31814406

ABSTRACT

A flexible bidentate cyclic phosphine, namely, 1,5-bis(p-tolyl)-3,7-bis(pyridin-2-yl)-1,5-diaza-3,7-diphosphacyclooctane (PNNP), was used as a template to construct a family of binuclear heteroleptic phosphine alkynyl complexes [PNNP(AuC2R)2], with R = Ph, C6H10OH, C5H8OH, (CH3)2COH, Ph2COH. All complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, and single-crystal X-ray analysis. It was found that the gold(I) complexes demonstrate a different organization of the crystal structure depending on the nature of the cocrystallized solvent (dichloromethane, acetone, and acetonitrile) because of formation of the supramolecular complexes through hydrogen bonding. These weak interactions appear to determine the conformation, packing, and spatial cooperation of flexible complex molecules that are reflected in the photophysical properties, which were carefully investigated in solution and in the solid state. The complexes demonstrate weak emission in solution at room temperature, and freezing results in blue shifting of the emission, which is accompanied by a significant increase in the luminescence intensity. Being isolated from dichloromethane, all gold(I) complexes exhibit green phosphorescence in the solid state, and the complexes with R = Ph and Ph2COH display substantial variation of their emission color after recrystallization from acetone and acetonitrile, respectively, which manifests itself as a significant bathochromic shift of up to 120 nm. The structural nonrigidity of the gold(I) complexes obtained and its impact on the properties of low-energy excited states were investigated in detail by density functional theory calculations, which indicate the significant role of the structural flexibility of the PNNP ligand in the formation of the low-energy excited states and confirm the impact of rotation of the functional groups in the coordination sphere on the emission properties of complexes.

16.
Inorg Chem ; 58(6): 3646-3660, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30793896

ABSTRACT

The series of chelating phosphine ligands, which contain bidentate P2 (bis[(2-diphenylphosphino)phenyl] ether, DPEphos; 4,5-bis(diphenylphosphino)-9,9-dimethylxanthene, Xantphos; 1,2-bis(diphenylphosphino)benzene, dppb), tridentate P3 (bis(2-diphenylphosphinophenyl)phenylphosphine), and tetradentate P4 (tris(2-diphenylphosphino)phenylphosphine) ligands, was used for the preparation of the corresponding dinuclear [M(µ2-SCN)P2]2 (M = Cu, 1, 3, 5; M = Ag, 2, 4, 6) and mononuclear [CuNCS(P3/P4)] (7, 9) and [AgSCN(P3/P4)] (8, 10) complexes. The reactions of P4 with silver salts in a 1:2 molar ratio produce tetranuclear clusters [Ag2(µ3-SCN)(t-SCN)(P4)]2 (11) and [Ag2(µ3-SCN)(P4)]22+ (12). Complexes 7-11 bearing terminally coordinated SCN ligands were efficiently converted into derivatives 13-17 with the weakly coordinating -SCN:B(C6F5)3 isothiocyanatoborate ligand. Compounds 1 and 5-17 exhibit thermally activated delayed fluorescence (TADF) behavior in the solid state. The excited states of thiocyanate species are dominated by the ligand to ligand SCN → π(phosphine) charge transfer transitions mixed with a variable contribution of MLCT. The boronation of SCN groups changes the nature of both the S1 and T1 states to (L + M)LCT d,p(M, P) → π(phosphine). The localization of the excited states on the aromatic systems of the phosphine ligands determines a wide range of luminescence energies achieved for the title complexes (λem varies from 448 nm for 1 to 630 nm for 10c). The emission of compounds 10 and 15, based on the P4 ligand, strongly depends on the solid-state packing (λem = 505 and 625 nm for two crystalline forms of 15), which affects structural reorganizations accompanying the formation of electronically excited states.

17.
Inorg Chem ; 58(3): 1988-2000, 2019 Feb 04.
Article in English | MEDLINE | ID: mdl-30633505

ABSTRACT

The reactions of labile [Re(diimine)(CO)3(H2O)]+ precursors (diimine = 2,2'-bipyridine, bpy; 1,10-phenanthroline, phen) with dicyanoargentate anion produce the dirhenium cyanide-bridged compounds [{Re(diimine)(CO)3}2CN)]+ (1 and 2). Substitution of the axial carbonyl ligands in 2 for triphenylphosphine gives the derivative [{Re(phen)(CO)2(PPh3)}2CN]+ (3), while the employment of a neutral metalloligand [Au(PPh3)(CN)] affords heterobimetallic complex [{Re(phen)(CO)3}NCAu(PPh3)]+ (4). Furthermore, the utilization of [Au(CN)2]-, [Pt(CN)4]2-, and [Fe(CN)6]4-/3- cyanometallates leads to the higher nuclearity aggregates [{Re(diimine)(CO)3NC} xM] m+ (M = Au, x = 2, 5 and 6; Pt, x = 4, 7 and 8; Fe, x = 6, 9 and 10). All novel compounds were characterized crystallographically. Assemblies 1-8 are phosphorescent both in solution and in the solid state; according to the DFT analysis, the optical properties are mainly associated with charge transfer from Re tricarbonyl motif to the diimine fragment. The energy of this process can be substantially modified by the properties of the ancillary ligands that allows to attain near-IR emission for 3 (λem = 737 nm in CH2Cl2). The Re-FeII/III complexes 9 and 10 are not luminescent but exhibit low energy absorptions, reaching 846 nm (10) due to ReI → FeIII transition.

18.
Chemistry ; 24(12): 3021-3029, 2018 Feb 26.
Article in English | MEDLINE | ID: mdl-29314337

ABSTRACT

A series of gold(I) iodide complexes 1-11 have been prepared from di-, tri-, and tetraphosphane ligands. Crystallographic studies reveal that the di- (1-7) and tetrametallic (11) compounds feature linearly coordinated gold(I) ions with short aurophilic contacts. Their luminescence behavior is determined by the combined influence of the phosphane properties, metal-metal interaction, and intermolecular lattice-defined interactions. The proposed variable contribution of 3 (X+M)-centered (X=halogen; M=metal) and 3 XLCT (halogen to ligand charge transfer) electronic transitions into the lowest lying excited state, which is influenced by supramolecular packing, is presumably responsible for the alteration of room-temperature emission color from green (λ=545 nm, for 11) to near-IR (λ=698 nm, for 2). Dinuclear compounds 6 and 7 exhibit distinct luminescence thermochromism with a blueshift up to 5750 cm-1 upon cooling. Such dramatic change of emission energy is assigned to the presence of two coupled triplet excited states of 3 ππ* and 3 (X+M)C/3 XLCT nature, the presence of which depends on both molecular structure and the crystal lattice arrangement.

19.
Chemistry ; 24(44): 11475-11484, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-29874401

ABSTRACT

Three groups of luminescent platinum complexes [Pt(C^N)(L)(Y)] [C^N=benzothienyl-pyridine (1), bezofuryl-pyridine (2), phenyl-pyridine (3); L/Y=DMSO/Cl (a), PPh3 /Cl (b), PPh3 /CN (c)] have been probed as halogen-bond (XB) acceptors towards iodofluorobenzenes (IC6 F5 and I2 C6 F4 ). Compounds 1 a and 2 a (L/Y=DMSO/Cl) afford the adducts 1 a⋅⋅⋅I2 C6 F4 and 2 a⋅⋅⋅I2 C6 F4 , which feature I⋅⋅⋅Sbtpy /I⋅⋅⋅πbtpy and I⋅⋅⋅ODMSO /I⋅⋅⋅Cl short contacts, respectively. The phosphane-cyanide derivatives 1 c and 2 c (L/Y=PPh3 /CN) co-crystallise with both IC6 F5 and I2 C6 F4 . None of the phpy-based species 3 a-3 c participated in XB interactions. Although the native complexes are rather poor luminophores in the solid state (Φem =0.023-0.089), the adducts exhibit an up to 10-fold increase of the intensity with a minor alteration of the emission energy. The observed gain in the quantum efficiency is mainly attributed to the joint influence of non-covalent interactions (halogen/hydrogen bonding, π-π stacking), which govern the crystal-packing mode and diminish the radiationless pathways for the T1 →S0 transition by providing a rigid environment around the chromophore.

20.
Inorg Chem ; 57(11): 6349-6361, 2018 Jun 04.
Article in English | MEDLINE | ID: mdl-29749736

ABSTRACT

A series of diimine ligands has been designed on the basis of 2-pyridyl-1 H-phenanthro[9,10- d]imidazole (L1, L2). Coupling the basic motif of L1 with anthracene-containing fragments affords the bichromophore compounds L3-L5, of which L4 and L5 adopt a donor-acceptor architecture. The latter allows intramolecular charge transfer with intense absorption bands in the visible spectrum (lowest λabs 464 nm (ε = 1.2 × 104 M-1 cm-1) and 490 nm (ε = 5.2 × 104 M-1 cm-1) in CH2Cl2 for L4 and L5, respectively). L1-L5 show strong fluorescence in a fluid medium (Φem = 22-92%, λem 370-602 nm in CH2Cl2); discernible emission solvatochromism is observed for L4 and L5. In addition, the presence of pyridyl (L1-L5) and dimethylaminophenyl (L5) groups enables reversible alteration of their optical properties by means of protonation. Ligands L1-L5 were used to synthesize the corresponding [Re(CO)3X(diimine)] (X = Cl, 1-5; X = CN, 1-CN) complexes. 1 and 2 exhibit unusual dual emission of singlet and triplet parentage, which originate from independently populated 1ππ* and 3MLCT excited states. In contrast to the majority of the reported Re(I) carbonyl luminophores, complexes 3-5 display moderately intense ligand-based fluorescence from an anthracene-containing secondary chromophore and complete quenching of emission from the 3MLCT state presumably due to the triplet-triplet energy transfer (3MLCT → 3ILCT).

SELECTION OF CITATIONS
SEARCH DETAIL