Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Int J Phytoremediation ; 16(7-12): 770-89, 2014.
Article in English | MEDLINE | ID: mdl-24933884

ABSTRACT

Plant-assisted bioremediation (rhizoremediation) stands out as a potential tool to inactivate or completely remove xenobiotics from the polluted environment. Therefore, it is of key importance to find an adequate combination of plant species and microorganisms that together enhance the clean-up process. To understand the response of plants upon bioaugmentation, the antioxidative and detoxification system was analyzed in high and low erucic acid rapeseed varieties (HEAR and LEAR, respectively), after 8 weeks of their treatment with petroleum degraders and 6000 mg diesel oil/kg dry soil. The oxidative stress was enhanced in LEAR being exposed to sole diesel oil, in comparison with HEAR. However, when LEAR plants were additionally inoculated with bacteria, suppression of total catalase (CAT) and ascorbate peroxidase (APX) activity were observed. Interestingly, glutathione transferase (GST) activity was found in these plants at a much higher level than in HEAR, which correlated with a more efficient diesel removal performed by LEAR in the polluted soil and upon bioaugmentation. A distinct profile of polycyclic aromatic hydrocarbons (PAH) was detected in leaves of these plants. Neither LEAR nor HEAR experienced any changes in the photosynthetic capacity upon diesel pollution and presence of petroleum degraders, which supports the usefulness of rhizoremediation with rapeseed.


Subject(s)
Bacteria/metabolism , Brassica napus/physiology , Gene Expression Regulation, Plant , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/metabolism , Antioxidants/metabolism , Biodegradation, Environmental , Brassica napus/genetics , Brassica napus/microbiology , Chlorophyll/metabolism , Environmental Pollution , Gasoline , Lipid Peroxidation , Oxidative Stress , Photosynthesis , Plant Leaves/genetics , Plant Leaves/microbiology , Plant Leaves/physiology , Plant Roots/genetics , Plant Roots/microbiology , Plant Roots/physiology , Plant Transpiration , Polycyclic Aromatic Hydrocarbons/analysis , Reactive Oxygen Species/metabolism , Soil/chemistry , Soil Pollutants/analysis , Stress, Physiological
2.
Water Air Soil Pollut ; 224: 1676, 2013.
Article in English | MEDLINE | ID: mdl-24078757

ABSTRACT

Rhizoremediation is a complex type of green clean-up technology that involves both plants and the rhizosphere-associated microorganisms to decompose hazardous compounds. The success of the strategy strongly depends on plant tolerance towards the pollutant, as well as plant's interactions with the rhizospheric microbes. The microorganisms may be stimulated by the secreted root exudates, which results in an increased breakdown of contaminants in the rhizosphere. The main goal of this study was to establish a potential rhizoremediation combination for a diesel-polluted site. Inoculation of plant roots or seeds with indigenous rhizospheric populations is a common approach in the rhizoremediation. However, we introduced hydrocarbon-degrading consortia (M10, R3, and K52) that were previously isolated from crude oil-contaminated soil instead of indigenous microbes. Bioaugmentation with these petroleum degraders was applied to screen four high biomass crop species (Indian mustard, alfalfa, high erucic acid rapeseed, HEAR, and low erucic acid rapeseed, LEAR) for their tolerance towards diesel oil. At no pollution, a promoting effect of M10 bacteria could be observed on germination and root elongation of all plant species. Moreover, M10 consortiums increased the germination index at 6,000 mg diesel oil per kilogram dry soil in the case of Indian mustard, alfalfa, and HEAR. The latter species was found to increment its dry weight upon bioaugmentation with M10 bacteria and all diesel oil treatments (6,000 and 24,000 mg diesel oil per kilogram dry soil). The initial results indicate HEAR and the M10 bacterial consortium as a promising plant-microbe tandem for a long-term rhizoremediation process.

SELECTION OF CITATIONS
SEARCH DETAIL