Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
Acta Neuropathol ; 147(1): 92, 2024 05 27.
Article in English | MEDLINE | ID: mdl-38801558

ABSTRACT

The SARS-CoV-2 virus that led to COVID-19 is associated with significant and long-lasting neurologic symptoms in many patients, with an increased mortality risk for people with Alzheimer's disease (AD) and/or Down syndrome (DS). However, few studies have evaluated the neuropathological and inflammatory sequelae in postmortem brain tissue obtained from AD and people with DS with severe SARS-CoV-2 infections. We examined tau, beta-amyloid (Aß), inflammatory markers and SARS-CoV-2 nucleoprotein in DS, AD, and healthy non-demented controls with COVID-19 and compared with non-infected brain tissue from each disease group (total n = 24). A nested ANOVA was used to determine regional effects of the COVID-19 infection on arborization of astrocytes (Sholl analysis) and percent-stained area of Iba-1 and TMEM 119. SARS-CoV-2 antibodies labeled neurons and glial cells in the frontal cortex of all subjects with COVID-19, and in the hippocampus of two of the three DS COVID-19 cases. SARS-CoV-2-related alterations were observed in peri-vascular astrocytes and microglial cells in the gray matter of the frontal cortex, hippocampus, and para-hippocampal gyrus. Bright field microscopy revealed scattered intracellular and diffuse extracellular Aß deposits in the hippocampus of controls with confirmed SARS-CoV-2 infections. Overall, the present preliminary findings suggest that SARS-CoV-2 infections induce abnormal inflammatory responses in Down syndrome.


Subject(s)
Alzheimer Disease , Brain , COVID-19 , Down Syndrome , Humans , Down Syndrome/pathology , Down Syndrome/metabolism , Down Syndrome/complications , Alzheimer Disease/pathology , Alzheimer Disease/virology , Alzheimer Disease/metabolism , COVID-19/pathology , COVID-19/complications , Male , Female , Aged , Middle Aged , Brain/pathology , Brain/virology , Aged, 80 and over , Astrocytes/pathology , Astrocytes/virology , Astrocytes/metabolism , Amyloid beta-Peptides/metabolism , SARS-CoV-2/pathogenicity , Microglia/pathology , Microglia/metabolism , Adult , tau Proteins/metabolism
2.
Alzheimers Dement ; 20(3): 2262-2272, 2024 03.
Article in English | MEDLINE | ID: mdl-38270275

ABSTRACT

Individuals with Down syndrome (DS) have a partial or complete trisomy of chromosome 21, resulting in an increased risk for early-onset Alzheimer's disease (AD)-type dementia by early midlife. Despite ongoing clinical trials to treat late-onset AD, individuals with DS are often excluded. Furthermore, timely diagnosis or management is often not available. Of the genetic causes of AD, people with DS represent the largest cohort. Currently, there is a knowledge gap regarding the underlying neurobiological mechanisms of DS-related AD (DS-AD), partly due to limited access to well-characterized brain tissue and biomaterials for research. To address this challenge, we created an international consortium of brain banks focused on collecting and disseminating brain tissue from persons with DS throughout their lifespan, named the Down Syndrome Biobank Consortium (DSBC) consisting of 11 biobanking sites located in Europe, India, and the USA. This perspective describes the DSBC harmonized protocols and tissue dissemination goals.


Subject(s)
Alzheimer Disease , Down Syndrome , Humans , Down Syndrome/genetics , Biological Specimen Banks , Alzheimer Disease/genetics , Brain , Europe
3.
Mol Cell Proteomics ; 19(1): 128-141, 2020 01.
Article in English | MEDLINE | ID: mdl-31699905

ABSTRACT

Synaptic dysfunction is an early pathogenic event in Alzheimer disease (AD) that contributes to network disturbances and cognitive decline. Some synapses are more vulnerable than others, including the synapses of the perforant path, which provides the main excitatory input to the hippocampus. To elucidate the molecular mechanisms underlying the dysfunction of these synapses, we performed an explorative proteomic study of the dentate terminal zone of the perforant path. The outer two-thirds of the molecular layer of the dentate gyrus, where the perforant path synapses are located, was microdissected from five subjects with AD and five controls. The microdissected tissues were dissolved and digested by trypsin. Peptides from each sample were labeled with different isobaric tags, pooled together and pre-fractionated into 72 fractions by high-resolution isoelectric focusing. Each fraction was then analyzed by liquid chromatography-mass spectrometry. We quantified the relative expression levels of 7322 proteins, whereof 724 showed significantly altered levels in AD. Our comprehensive data analysis using enrichment and pathway analyses strongly indicated that presynaptic signaling, such as exocytosis and synaptic vesicle cycle processes, is severely disturbed in this area in AD, whereas postsynaptic proteins remained unchanged. Among the significantly altered proteins, we selected three of the most downregulated synaptic proteins; complexin-1, complexin-2 and synaptogyrin-1, for further validation, using a new cohort consisting of six AD and eight control cases. Semi-quantitative analysis of immunohistochemical staining confirmed decreased levels of complexin-1, complexin-2 and synaptogyrin-1 in the outer two-thirds of the molecular layer of the dentate gyrus in AD. Our in-depth proteomic analysis provides extensive knowledge on the potential molecular mechanism underlying synaptic dysfunction related to AD and supports that presynaptic alterations are more important than postsynaptic changes in early stages of the disease. The specific synaptic proteins identified could potentially be targeted to halt synaptic dysfunction in AD.


Subject(s)
Alzheimer Disease/pathology , Dentate Gyrus/pathology , Perforant Pathway/pathology , Proteins/metabolism , Proteome , Synapses/pathology , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Case-Control Studies , Cohort Studies , Dentate Gyrus/metabolism , Female , Humans , Immunohistochemistry , Male , Middle Aged , Neurons/metabolism , Neurons/pathology , Perforant Pathway/metabolism , Proteomics/methods , Synapses/metabolism , Synaptic Transmission
4.
FASEB J ; 34(2): 3359-3366, 2020 02.
Article in English | MEDLINE | ID: mdl-31916313

ABSTRACT

Possible involvement of complement (C) systems in the pathogenesis of traumatic brain injury (TBI) was investigated by quantifying Cproteins in plasma astrocyte-derived exosomes (ADEs) of subjects with sports-related TBI (sTBI) and TBI in military veterans (mtTBI) without cognitive impairment. All sTBI subjects (n = 24) had mild injuries, whereas eight of the mtTBI subjects had moderate, and 17 had mild injuries. Plasma levels of ADEs were decreased after acute sTBI and returned to normal within months. Cprotein levels in ADEs were from 12- to 35-fold higher than the corresponding levels in neuron-derived exosomes. CD81 exosome marker-normalized ADE levels of classical pathway C4b, alternative pathway factor D and Bb, lectin pathway mannose-binding lectin (MBL), and shared neurotoxic effectors C3b and C5b-9 terminal C complex were significantly higher and those of C regulatory proteins CR1 and CD59 were lower in the first week of acute sTBI (n = 12) than in controls (n = 12). Most C abnormalities were no longer detected in chronic sTBI at 3-12 months after acute sTBI, except for elevated levels of factor D, Bb, and MBL. In contrast, significant elevations of ADE levels of C4b, factor D, Bb, MBL, C3b and C5b-9 terminal C complex, and depressions of CR1 and CD59 relative to those of controls were observed after 1-4 years in early chronic mtTBI (n = 10) and persisted for decades except for normalization of Bb, MBL, and CD59 in late chronic mtTBI (n = 15). Complement inhibitors may be useful therapeutically in acute TBI and post-concussion syndrome.


Subject(s)
Astrocytes/metabolism , Brain Injuries, Traumatic/blood , Complement System Proteins/metabolism , Exosomes/metabolism , Biomarkers/blood , Brain Injuries, Traumatic/pathology , C-Reactive Protein/metabolism , Female , Humans , Male , Young Adult
5.
Glia ; 68(7): 1347-1360, 2020 07.
Article in English | MEDLINE | ID: mdl-31944407

ABSTRACT

Inflammation can be resolved by pro-homeostatic lipids called specialized pro-resolving mediators (SPMs) upon activation of their receptors. Dysfunctional inflammatory resolution is now considered as a driver of chronic neuroinflammation and Alzheimer's disease (AD) pathogenesis. We have previously shown that SPM levels were reduced and also that SPM-binding receptors were increased in patients with AD compared to age-matched controls. Individuals with Down syndrome (DS) exhibit accelerated acquisition of AD neuropathology, dementia, and neuroinflammation at an earlier age than the general population. Beneficial effects of inducing resolution in DS have not been investigated previously. The effects of the SPM resolvin E1 (RvE1) in a DS mouse model (Ts65Dn) were investigated with regard to inflammation, neurodegeneration, and memory deficits. A moderate dose of RvE1 for 4 weeks in middle-aged Ts65Dn mice elicited a significant reduction in memory loss, along with reduced levels of serum pro-inflammatory cytokines, and reduced microglial activation in the hippocampus of Ts65Dn mice but had no effects in age-matched normosomic mice. There were no observable adverse side effects in Ts65Dn or in normosomic mice. These findings suggest that SPMs may represent a novel drug target for individuals with DS and others at risk of developing AD.


Subject(s)
Alzheimer Disease/drug therapy , Down Syndrome/drug therapy , Eicosapentaenoic Acid/analogs & derivatives , Hippocampus/drug effects , Memory Disorders/prevention & control , Alzheimer Disease/pathology , Animals , Down Syndrome/pathology , Eicosapentaenoic Acid/pharmacology , Hippocampus/pathology , Male , Maze Learning/physiology , Mice, Transgenic
6.
Neurobiol Dis ; 134: 104616, 2020 02.
Article in English | MEDLINE | ID: mdl-31678403

ABSTRACT

The pontine nucleus locus coeruleus (LC) is the primary source of noradrenergic (NE) projections to the brain and is important for working memory, attention, and cognitive flexibility. Individuals with Down syndrome (DS) develop Alzheimer's disease (AD) with high penetrance and often exhibit working memory deficits coupled with degeneration of LC-NE neurons early in the progression of AD pathology. Designer receptors exclusively activated by designer drugs (DREADDs) are chemogenetic tools that allow targeted manipulation of discrete neuronal populations in the brain without the confounds of off-target effects. We utilized male Ts65Dn mice (a mouse model for DS), and male normosomic (NS) controls to examine the effects of inhibitory DREADDs delivered via an AAV vector under translational control of the synthetic PRSx8, dopamine ß hydroxylase (DßH) promoter. This chemogenetic tool allowed LC inhibition upon administration of the inert DREADD ligand, clozapine-N-oxide (CNO). DREADD-mediated LC inhibition impaired performance in a novel object recognition task and reversal learning in a spatial task. DREADD-mediated LC inhibition gave rise to an elevation of α-adrenoreceptors both in NS and in Ts65Dn mice. Further, microglial markers showed that the inhibitory DREADD stimulation led to increased microglial activation in the hippocampus in Ts65Dn but not in NS mice. These findings strongly suggest that LC signaling is important for intact memory and learning in Ts65Dn mice and disruption of these neurons leads to increased inflammation and dysregulation of adrenergic receptors.


Subject(s)
Adrenergic Neurons/metabolism , Down Syndrome/metabolism , Locus Coeruleus/metabolism , Memory Disorders/metabolism , Adrenergic Neurons/drug effects , Animals , Designer Drugs , Disease Models, Animal , Down Syndrome/complications , Locus Coeruleus/drug effects , Male , Mice , Mice, Transgenic
7.
J Sports Sci ; 38(23): 2677-2687, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32715955

ABSTRACT

Sport-related concussion return to play (RTP) decisions are largely based on the resolution of self-reported symptoms and neurocognitive function. Some evaluators also incorporate balance; however, an objective approach to balance that can detect effects beyond the acute condition is warranted. The purpose of this study is to examine linear measures of biomechanical balance up to 6 months post-concussion, and to present preliminary diagnostic thresholds useful for RTP. Each concussed athlete participated in instrumented standing balance tasks at 4 timepoints post-concussion. The measures from concussed athletes were compared to the sport-matched non-concussed athlete group at each timepoint. Centre of pressure (COP) mediolateral (ML) velocity in double-leg stance on a hard surface discriminated well between non-concussed and concussed athletes. COP anterior-posterior (AP) velocity in tandem stance on foam showed sensitivity to concussion. Sixty per cent of athletes at 6 months post-concussion did not recover to within the proposed COP ML velocity threshold in double-leg stance on a hard surface. Seventy-one per cent of athletes at 6 months post-concussion did not recover to within the COP AP velocity threshold in tandem stance on foam. This lack of recovery potentially indicates vestibular and motor control impairments long past the typical period of RTP.


Subject(s)
Athletic Injuries/physiopathology , Brain Concussion/physiopathology , Postural Balance , Biomechanical Phenomena , Female , Follow-Up Studies , Humans , Male , Recovery of Function , Return to Sport , Standing Position , Task Performance and Analysis , Young Adult
8.
Alzheimers Dement ; 16(7): 1065-1077, 2020 07.
Article in English | MEDLINE | ID: mdl-32544310

ABSTRACT

Improved medical care of individuals with Down syndrome (DS) has led to an increase in life expectancy to over the age of 60 years. In conjunction, there has been an increase in age-related co-occurring conditions including Alzheimer's disease (AD). Understanding the factors that underlie symptom and age of clinical presentation of dementia in people with DS may provide insights into the mechanisms of sporadic and DS-associated AD (DS-AD). In March 2019, the Alzheimer's Association, Global Down Syndrome Foundation and the LuMind IDSC Foundation partnered to convene a workshop to explore the state of the research on the intersection of AD and DS research; to identify research gaps and unmet needs; and to consider how best to advance the field. This article provides a summary of discussions, including noting areas of emerging science and discovery, considerations for future studies, and identifying open gaps in our understanding for future focus.


Subject(s)
Alzheimer Disease/complications , Down Syndrome/complications , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Down Syndrome/metabolism , Humans
9.
Alzheimers Dement ; 13(5): 541-549, 2017 May.
Article in English | MEDLINE | ID: mdl-27755974

ABSTRACT

INTRODUCTION: Individuals with Down syndrome (DS) exhibit Alzheimer's disease (AD) neuropathology and dementia early in life. Blood biomarkers of AD neuropathology would be valuable, as non-AD intellectual disabilities of DS and AD dementia overlap clinically. We hypothesized that elevations of amyloid ß (Aß) peptides and phosphorylated-tau in neuronal exosomes may document preclinical AD. METHODS: AD neuropathogenic proteins Aß1-42, P-T181-tau, and P-S396-tau were quantified by enzyme-linked immunosorbent assays in extracts of neuronal exosomes purified from blood of individuals with DS and age-matched controls. RESULTS: Neuronal exosome levels of Aß1-42, P-T181-tau, and P-S396-tau were significantly elevated in individuals with DS compared with age-matched controls at all ages beginning in childhood. No significant gender differences were observed. DISCUSSION: These early increases in Aß1-42, P-T181-tau, and P-S396-tau in individuals with DS may provide a basis for early intervention as targeted treatments become available.


Subject(s)
Alzheimer Disease/diagnosis , Down Syndrome/blood , Exosomes/metabolism , Adolescent , Alzheimer Disease/blood , Amyloid beta-Peptides/blood , Biomarkers/blood , Female , Humans , Male , Middle Aged , Peptide Fragments/blood , Young Adult , tau Proteins/blood
10.
J Neurosci ; 35(4): 1343-53, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25632113

ABSTRACT

Designer receptors exclusively activated by designer drugs (DREADDs) are novel and powerful tools to investigate discrete neuronal populations in the brain. We have used DREADDs to stimulate degenerating neurons in a Down syndrome (DS) model, Ts65Dn mice. Individuals with DS develop Alzheimer's disease (AD) neuropathology and have elevated risk for dementia starting in their 30s and 40s. Individuals with DS often exhibit working memory deficits coupled with degeneration of the locus coeruleus (LC) norepinephrine (NE) neurons. It is thought that LC degeneration precedes other AD-related neuronal loss, and LC noradrenergic integrity is important for executive function, working memory, and attention. Previous studies have shown that LC-enhancing drugs can slow the progression of AD pathology, including amyloid aggregation, oxidative stress, and inflammation. We have shown that LC degeneration in Ts65Dn mice leads to exaggerated memory loss and neuronal degeneration. We used a DREADD, hM3Dq, administered via adeno-associated virus into the LC under a synthetic promoter, PRSx8, to selectively stimulate LC neurons by exogenous administration of the inert DREADD ligand clozapine-N-oxide. DREADD stimulation of LC-NE enhanced performance in a novel object recognition task and reduced hyperactivity in Ts65Dn mice, without significant behavioral effects in controls. To confirm that the noradrenergic transmitter system was responsible for the enhanced memory function, the NE prodrug l-threo-dihydroxyphenylserine was administered in Ts65Dn and normosomic littermate control mice, and produced similar behavioral results. Thus, NE stimulation may prevent memory loss in Ts65Dn mice, and may hold promise for treatment in individuals with DS and dementia.


Subject(s)
Antipsychotic Agents/therapeutic use , Clozapine/analogs & derivatives , Down Syndrome/complications , Memory Disorders/drug therapy , Memory Disorders/etiology , Receptor, Muscarinic M3/metabolism , Animals , Cell Count , Clozapine/therapeutic use , Cross-Over Studies , Designer Drugs , Disease Models, Animal , Down Syndrome/genetics , Exploratory Behavior/drug effects , Exploratory Behavior/radiation effects , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Locus Coeruleus/drug effects , Locus Coeruleus/metabolism , Locus Coeruleus/pathology , Male , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Neurologic Mutants , Motor Activity/drug effects , Motor Activity/genetics , Neurodegenerative Diseases/etiology , Receptor, Muscarinic M3/genetics , Serine/therapeutic use
11.
Neuroimage ; 113: 235-45, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25791783

ABSTRACT

The locus coeruleus (LC) noradrenergic system regulates arousal and modulates attention through its extensive projections across the brain. LC dysfunction has been implicated in a broad range of neurodevelopmental, neurodegenerative and psychiatric disorders, as well as in the cognitive changes observed during normal aging. Magnetic resonance imaging (MRI) has been used to characterize the human LC (elevated contrast relative to surrounding structures), but there is limited understanding of the factors underlying putative LC contrast that are critical to successful biomarker development and confidence in localizing nucleus LC. We used ultra-high-field 7 T magnetic resonance imaging (MRI) to acquire T1-weighted microscopy resolution images (78 µm in-plane resolution) of the LC from post-mortem tissue samples. Histological analyses were performed to characterize the distribution of tyrosine hydroxylase (TH) and neuromelanin in the scanned tissue, which allowed for direct comparison with MR microscopy images. Our results indicate that LC-MRI contrast corresponds to the location of neuromelanin cells in LC; these also correspond to norepinephrine neurons. Thus, neuromelanin appears to serve as a natural contrast agent for nucleus LC that can be used to localize nucleus LC and may have the potential to characterize neurodegenerative disease.


Subject(s)
Locus Coeruleus/anatomy & histology , Aged , Aged, 80 and over , Biomarkers , Brain Stem/anatomy & histology , Brain Stem/enzymology , Cadaver , Coloring Agents , Female , Humans , Image Processing, Computer-Assisted , Immunohistochemistry , Locus Coeruleus/enzymology , Magnetic Resonance Imaging , Male , Melanins/metabolism , Middle Aged , Postmortem Changes , Reproducibility of Results , Tyrosine 3-Monooxygenase/analysis
12.
Brain ; 137(Pt 3): 860-72, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24519975

ABSTRACT

Basal forebrain cholinergic neurons play a key role in cognition. This neuronal system is highly dependent on NGF for its synaptic integrity and the phenotypic maintenance of its cell bodies. Basal forebrain cholinergic neurons progressively degenerate in Alzheimer's disease and Down's syndrome, and their atrophy contributes to the manifestation of dementia. Paradoxically, in Alzheimer's disease brains, the synthesis of NGF is not affected and there is abundance of the NGF precursor, proNGF. We have shown that this phenomenon is the result of a deficit in NGF's extracellular metabolism that compromises proNGF maturation and exacerbates its subsequent degradation. We hypothesized that a similar imbalance should be present in Down's syndrome. Using a combination of quantitative reverse transcription-polymerase chain reaction, enzyme-linked immunosorbent assay, western blotting and zymography, we investigated signs of NGF metabolic dysfunction in post-mortem brains from the temporal (n = 14), frontal (n = 34) and parietal (n = 20) cortex obtained from subjects with Down's syndrome and age-matched controls (age range 31-68 years). We further examined primary cultures of human foetal Down's syndrome cortex (17-21 gestational age weeks) and brains from Ts65Dn mice (12-22 months), a widely used animal model of Down's syndrome. We report a significant increase in proNGF levels in human and mouse Down's syndrome brains, with a concomitant reduction in the levels of plasminogen and tissue plasminogen activator messenger RNA as well as an increment in neuroserpin expression; enzymes that partake in proNGF maturation. Human Down's syndrome brains also exhibited elevated zymogenic activity of MMP9, the major NGF-degrading protease. Our results indicate a failure in NGF precursor maturation in Down's syndrome brains and a likely enhanced proteolytic degradation of NGF, changes which can compromise the trophic support of basal forebrain cholinergic neurons. The alterations in proNGF and MMP9 were also present in cultures of Down's syndrome foetal cortex; suggesting that this trophic compromise may be amenable to rescue, before frank dementia onset. Our study thus provides a novel paradigm for cholinergic neuroprotection in Alzheimer's disease and Down's syndrome.


Subject(s)
Down Syndrome/metabolism , Nerve Growth Factor/metabolism , Prosencephalon/metabolism , Adult , Aged , Animals , Case-Control Studies , Disease Models, Animal , Down Syndrome/enzymology , Down Syndrome/physiopathology , Fetus/enzymology , Fetus/metabolism , Fetus/pathology , Gestational Age , Humans , Matrix Metalloproteinase 9/physiology , Mice , Mice, Transgenic , Middle Aged , Nerve Growth Factor/biosynthesis , Nerve Growth Factor/physiology , Prosencephalon/enzymology , Prosencephalon/pathology , Protein Precursors/physiology
13.
Alzheimers Dement ; 11(1): 40-50.e1-2, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24530025

ABSTRACT

BACKGROUND: Resolution is the final stage of the inflammatory response, when restoration of tissue occurs. Failure may lead to chronic inflammation, which is known as part of the pathology in the brain of individuals with Alzheimer's disease (AD). METHODS: Specialized pro-resolving mediators (SPMs), receptors, biosynthetic enzyme, and downstream effectors involved in resolution were analyzed in postmortem hippocampal tissue from AD patients and non-AD subjects. SPMs were analyzed in cerebrospinal fluid (CSF). RESULTS: SPMs and SPM receptors were detected in the human brain. Levels of the SPM lipoxin A4 (LXA4) were reduced in AD, both in the CSF and hippocampus. An enzyme involved in LXA4 synthesis and two SPM receptors were elevated in AD brains. LXA4 and RvD1 levels in CSF correlated with Mini-Mental State Examination (MMSE) scores. CONCLUSIONS: A resolution pathway exists in the brain and the alterations described herein strongly suggest a dysfunction of this pathway in AD. MMSE correlations suggest a connection with cognitive function in AD.


Subject(s)
Alzheimer Disease/metabolism , Hippocampus/metabolism , Inflammation Mediators/metabolism , Aged , Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/enzymology , Alzheimer Disease/pathology , Amyloid beta-Peptides/cerebrospinal fluid , Biomarkers/cerebrospinal fluid , Case-Control Studies , Cognitive Dysfunction/cerebrospinal fluid , Cognitive Dysfunction/enzymology , Cognitive Dysfunction/pathology , Docosahexaenoic Acids/cerebrospinal fluid , Female , Hippocampus/enzymology , Hippocampus/pathology , Humans , Inflammation/cerebrospinal fluid , Inflammation/enzymology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/cerebrospinal fluid , Lipoxins/cerebrospinal fluid , Lipoxygenase/cerebrospinal fluid , Male , Middle Aged , Receptors, Formyl Peptide/analysis , Receptors, Lipoxin/analysis , tau Proteins/cerebrospinal fluid
14.
Alzheimers Dement ; 11(6): 700-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25510383

ABSTRACT

In the United States, estimates indicate there are between 250,000 and 400,000 individuals with Down syndrome (DS), and nearly all will develop Alzheimer's disease (AD) pathology starting in their 30s. With the current lifespan being 55 to 60 years, approximately 70% will develop dementia, and if their life expectancy continues to increase, the number of individuals developing AD will concomitantly increase. Pathogenic and mechanistic links between DS and Alzheimer's prompted the Alzheimer's Association to partner with the Linda Crnic Institute for Down Syndrome and the Global Down Syndrome Foundation at a workshop of AD and DS experts to discuss similarities and differences, challenges, and future directions for this field. The workshop articulated a set of research priorities: (1) target identification and drug development, (2) clinical and pathological staging, (3) cognitive assessment and clinical trials, and (4) partnerships and collaborations with the ultimate goal to deliver effective disease-modifying treatments.


Subject(s)
Alzheimer Disease/physiopathology , Down Syndrome/physiopathology , Alzheimer Disease/diagnosis , Alzheimer Disease/drug therapy , Alzheimer Disease/pathology , Animals , Clinical Trials as Topic , Congresses as Topic , Disease Models, Animal , Down Syndrome/diagnosis , Down Syndrome/drug therapy , Down Syndrome/pathology , Drug Discovery , Humans , Neuropsychological Tests
15.
Alzheimers Dement ; 11(1): 70-98, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25022540

ABSTRACT

Recent evidence indicates that sensory and motor changes may precede the cognitive symptoms of Alzheimer's disease (AD) by several years and may signify increased risk of developing AD. Traditionally, sensory and motor dysfunctions in aging and AD have been studied separately. To ascertain the evidence supporting the relationship between age-related changes in sensory and motor systems and the development of AD and to facilitate communication between several disciplines, the National Institute on Aging held an exploratory workshop titled "Sensory and Motor Dysfunctions in Aging and AD." The scientific sessions of the workshop focused on age-related and neuropathologic changes in the olfactory, visual, auditory, and motor systems, followed by extensive discussion and hypothesis generation related to the possible links among sensory, cognitive, and motor domains in aging and AD. Based on the data presented and discussed at this workshop, it is clear that sensory and motor regions of the central nervous system are affected by AD pathology and that interventions targeting amelioration of sensory-motor deficits in AD may enhance patient function as AD progresses.


Subject(s)
Aging/physiology , Alzheimer Disease/physiopathology , Movement Disorders/physiopathology , Sensation Disorders/physiopathology , Alzheimer Disease/diagnosis , Disease Progression , Early Diagnosis , Humans , Movement Disorders/diagnosis , National Institute on Aging (U.S.) , Sensation Disorders/diagnosis , United States
16.
J Neuroinflammation ; 11: 171, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25510908

ABSTRACT

BACKGROUND: One of the more profound features of systemic lupus erythematosus (SLE) is that females have a 9:1 prevalence of this disease over males. Up to 80% of SLE patients have cognitive defects or affective disorders. The mechanism of CNS injury responsible for cognitive impairment is unknown. We previously showed that ERα deficiency significantly reduced renal disease and increased survival in lupus-prone mice. We hypothesized that ERα deficiency would be similarly protective in the brain, and that ERα may play a role in modulating blood-brain barrier (BBB) integrity and/or neuroinflammation in lupus-prone mice. METHODS: MRL/lpr ERα+/+ and ERαKO mice (n = 46) were ovariectomized, received 17ß-estradiol pellets, and underwent radial arm water maze (WRAM) and novel object recognition (NOR) testing starting at eight weeks of age. Mice were sacrificed and brains were hemisected and processed for either immunohistochemistry, or hippocampus and parietal cortex dissection for Western blotting. RESULTS: MRL/lpr ERαKO mice (n = 21) performed significantly better in WRAM testing than wild-type MRL/lpr mice (n = 25). There was a significant reduction in reference memory errors (P <0.007), working memory errors (P <0.05), and start arm errors (P <0.02) in ERαKO mice. There were significant differences in NOR testing, particularly total exploration time, with ERα deficiency normalizing behavior. No significant differences were seen in markers of tight junction, astrogliosis, or microgliosis in the hippocampus or cortex by Western blot, however, there was a significant reduction in numbers of Iba1+ activated microglia in the hippocampus of ERαKO mice, as evidenced by immunohistochemietry (IHC). CONCLUSION: ERα deficiency provides significant protection against cognitive deficits in MRL/lpr mice as early as eight weeks of age. Additionally, the significant reduction in Iba1+ activated microglia in the MRL/lpr ERαKO mice was consistent with reduced inflammation, and may represent a biological mechanism for the cognitive improvement observed.


Subject(s)
Cognition Disorders/metabolism , Cognition Disorders/prevention & control , Estrogen Receptor alpha/deficiency , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/prevention & control , Animals , Female , Maze Learning/drug effects , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout
17.
Nutr Neurosci ; 17(6): 241-51, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24192577

ABSTRACT

The prevalence of obesity is growing and now includes at least one-third of the adult population in the United States. As obesity and dementia rates reach epidemic proportions, an even greater interest in the effects of nutrition on the brain have become evident. This review discusses various mechanisms by which a high fat diet and/or obesity can alter the brain and cognition. It is well known that a poor diet and obesity can lead to certain disorders such as type II diabetes, metabolic syndrome, and heart disease. However, long-term effects of obesity on the brain need to be further examined. The contribution of insulin resistance and oxidative stress is briefly reviewed from studies in the current literature. The role of inflammation and vascular alterations are described in more detail due to our laboratory's experience in evaluating these specific factors. It is very likely that each of these factors plays a role in diet-induced and/or obesity-induced cognitive decline.


Subject(s)
Brain/physiopathology , Cognition Disorders/epidemiology , Cognition/physiology , Dementia/epidemiology , Diet, High-Fat/adverse effects , Obesity/epidemiology , Cognition Disorders/etiology , Dementia/etiology , Humans , Insulin Resistance , Obesity/complications , Oxidative Stress , Prevalence , United States
18.
J Clin Med ; 13(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38592182

ABSTRACT

Background: Individuals with Down syndrome (DS) exhibit an almost complete penetrance of Alzheimer's disease (AD) pathology but are underrepresented in clinical trials for AD. The Tau protein is associated with microtubule function in the neuron and is crucial for normal axonal transport. In several different neurodegenerative disorders, Tau misfolding leads to hyper-phosphorylation of Tau (p-Tau), which may seed pathology to bystander cells and spread. This review is focused on current findings regarding p-Tau and its potential to seed pathology as a "prion-like" spreader. It also considers the consequences of p-Tau pathology leading to AD, particularly in individuals with Down syndrome. Methods: Scopus (SC) and PubMed (PM) were searched in English using keywords "tau AND seeding AND brain AND down syndrome". A total of 558 SC or 529 PM potentially relevant articles were identified, of which only six SC or three PM articles mentioned Down syndrome. This review was built upon the literature and the recent findings of our group and others. Results: Misfolded p-Tau isoforms are seeding competent and may be responsible for spreading AD pathology. Conclusions: This review demonstrates recent work focused on understanding the role of neurofibrillary tangles and monomeric/oligomeric Tau in the prion-like spreading of Tau pathology in the human brain.

19.
Lakartidningen ; 1212024 09 30.
Article in Swedish | MEDLINE | ID: mdl-39354735

ABSTRACT

Individuals with Down syndrome (DS) have increased prevalence of Alzheimer's disease (AD) at an earlier age than the general population. Diagnostic tools that can improve diagnosis and treatment of dementia in DS and differentiate between dementia and intellectual disabilities include cognitive batteries, sensitive plasma assays, and PET imaging for amyloid and tau. Adults with DS should be included in memory clinic assessments and offered appropriate medications available to the general population with dementia. The Swedish dementia registry, SveDem, has added the diagnosis AD due to the genetic overload in DS, providing a national diagnostic registry for those with DS.


Subject(s)
Alzheimer Disease , Dementia , Down Syndrome , Adult , Humans , Alzheimer Disease/diagnosis , Dementia/diagnosis , Dementia/etiology , Diagnosis, Differential , Down Syndrome/complications , Down Syndrome/diagnosis , Neuropsychological Tests , Positron-Emission Tomography , Registries
20.
J Alzheimers Dis ; 101(2): 541-561, 2024.
Article in English | MEDLINE | ID: mdl-39213062

ABSTRACT

Background: Down syndrome (DS) is one of the most commonly occurring chromosomal conditions. Most individuals with DS develop Alzheimer's disease (AD) by 50 years of age. Recent evidence suggests that AD pathology in the locus coeruleus (LC) is an early event in sporadic AD. It is likely that the widespread axonal network of LC neurons contributes to the spread of tau pathology in the AD brain, although this has not been investigated in DS-AD. Objective: The main purpose of this study was to profile AD pathology and neuroinflammation in the LC, comparing AD and DS-AD in postmortem human tissues. Methods: We utilized immunofluorescence and semi-quantitative analyses of pTau (4 different forms), amyloid-ß (Aß), glial, and neuronal markers in the LC across 36 cases (control, DS-AD, and AD) to compare the different pathological profiles. Results: Oligomeric tau was highly elevated in DS-AD cases compared to LOAD or EOAD cases. The distribution of staining for pT231 was elevated in DS-AD and EOAD compared to the LOAD group. The DS-AD group exhibited increased Aß immunostaining compared to AD cases. The number of tau-bearing neurons was also significantly different between the EOAD and DS-AD cases compared to the LOAD cases. Conclusions: While inflammation, pTau, and Aß are all involved in AD pathology, their contribution to disease progression may differ depending on the diagnosis. Our results suggest that DS-AD and EOAD may be more similar in pathology than LOAD. Our study highlights unique avenues to further our understanding of the mechanisms governing AD neuropathology.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Down Syndrome , Locus Coeruleus , tau Proteins , Down Syndrome/pathology , Down Syndrome/metabolism , Humans , Locus Coeruleus/pathology , Locus Coeruleus/metabolism , tau Proteins/metabolism , Male , Female , Alzheimer Disease/pathology , Alzheimer Disease/metabolism , Middle Aged , Amyloid beta-Peptides/metabolism , Aged , Neurons/pathology , Neurons/metabolism , Aged, 80 and over , Adult
SELECTION OF CITATIONS
SEARCH DETAIL