Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Nat Immunol ; 25(9): 1593-1606, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39112630

ABSTRACT

The thymus is essential for establishing adaptive immunity yet undergoes age-related involution that leads to compromised immune responsiveness. The thymus is also extremely sensitive to acute insult and although capable of regeneration, this capacity declines with age for unknown reasons. We applied single-cell and spatial transcriptomics, lineage-tracing and advanced imaging to define age-related changes in nonhematopoietic stromal cells and discovered the emergence of two atypical thymic epithelial cell (TEC) states. These age-associated TECs (aaTECs) formed high-density peri-medullary epithelial clusters that were devoid of thymocytes; an accretion of nonproductive thymic tissue that worsened with age, exhibited features of epithelial-to-mesenchymal transition and was associated with downregulation of FOXN1. Interaction analysis revealed that the emergence of aaTECs drew tonic signals from other functional TEC populations at baseline acting as a sink for TEC growth factors. Following acute injury, aaTECs expanded substantially, further perturbing trophic regeneration pathways and correlating with defective repair of the involuted thymus. These findings therefore define a unique feature of thymic involution linked to immune aging and could have implications for developing immune-boosting therapies in older individuals.


Subject(s)
Aging , Epithelial Cells , Forkhead Transcription Factors , Regeneration , Thymus Gland , Thymus Gland/immunology , Animals , Epithelial Cells/immunology , Regeneration/immunology , Mice , Aging/immunology , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Epithelial-Mesenchymal Transition/immunology , Mice, Inbred C57BL , Male , Thymocytes/immunology , Thymocytes/metabolism , Female , Single-Cell Analysis
2.
Nat Immunol ; 22(7): 851-864, 2021 07.
Article in English | MEDLINE | ID: mdl-34099918

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are essential to maintain tissue homeostasis. In cancer, ILC2s can harbor both pro-tumorigenic and anti-tumorigenic functions, but we know little about their underlying mechanisms or whether they could be clinically relevant or targeted to improve patient outcomes. Here, we found that high ILC2 infiltration in human melanoma was associated with a good clinical prognosis. ILC2s are critical producers of the cytokine granulocyte-macrophage colony-stimulating factor, which coordinates the recruitment and activation of eosinophils to enhance antitumor responses. Tumor-infiltrating ILC2s expressed programmed cell death protein-1, which limited their intratumoral accumulation, proliferation and antitumor effector functions. This inhibition could be overcome in vivo by combining interleukin-33-driven ILC2 activation with programmed cell death protein-1 blockade to significantly increase antitumor responses. Together, our results identified ILC2s as a critical immune cell type involved in melanoma immunity and revealed a potential synergistic approach to harness ILC2 function for antitumor immunotherapies.


Subject(s)
Antibodies/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Immune Checkpoint Inhibitors/pharmacology , Interleukin-33/pharmacology , Lymphocytes/drug effects , Melanoma, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Skin Neoplasms/drug therapy , Animals , Cell Line, Tumor , Chemotaxis, Leukocyte/drug effects , Cytotoxicity, Immunologic/drug effects , Eosinophils/drug effects , Eosinophils/immunology , Eosinophils/metabolism , Female , Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Humans , Lymphocytes/immunology , Lymphocytes/metabolism , Male , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Melanoma, Experimental/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/immunology , Skin Neoplasms/metabolism
4.
Nat Immunol ; 17(7): 816-24, 2016 07.
Article in English | MEDLINE | ID: mdl-27213690

ABSTRACT

The detection of aberrant cells by natural killer (NK) cells is controlled by the integration of signals from activating and inhibitory ligands and from cytokines such as IL-15. We identified cytokine-inducible SH2-containing protein (CIS, encoded by Cish) as a critical negative regulator of IL-15 signaling in NK cells. Cish was rapidly induced in response to IL-15, and deletion of Cish rendered NK cells hypersensitive to IL-15, as evidenced by enhanced proliferation, survival, IFN-γ production and cytotoxicity toward tumors. This was associated with increased JAK-STAT signaling in NK cells in which Cish was deleted. Correspondingly, CIS interacted with the tyrosine kinase JAK1, inhibiting its enzymatic activity and targeting JAK for proteasomal degradation. Cish(-/-) mice were resistant to melanoma, prostate and breast cancer metastasis in vivo, and this was intrinsic to NK cell activity. Our data uncover a potent intracellular checkpoint in NK cell-mediated tumor immunity and suggest possibilities for new cancer immunotherapies directed at blocking CIS function.


Subject(s)
Immunotherapy/methods , Killer Cells, Natural/immunology , Neoplasms/therapy , Suppressor of Cytokine Signaling Proteins/metabolism , Animals , Cell Proliferation/genetics , Cytotoxicity, Immunologic/genetics , Immunologic Surveillance , Interferon-gamma/metabolism , Interleukin-15/metabolism , Janus Kinase 1/metabolism , Lymphocyte Activation/genetics , Melanoma, Experimental , Mice , Mice, Inbred C57BL , Mice, Knockout , Molecular Targeted Therapy , Neoplasms/immunology , Signal Transduction/genetics , Suppressor of Cytokine Signaling Proteins/genetics
5.
Nat Immunol ; 14(9): 959-65, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23852275

ABSTRACT

Foxp3⁺ regulatory T (Treg) cells are a crucial immunosuppressive population of CD4⁺ T cells, yet the homeostatic processes and survival programs that maintain the Treg cell pool are poorly understood. Here we report that peripheral Treg cells markedly alter their proliferative and apoptotic rates to rapidly restore numerical deficit through an interleukin 2-dependent and costimulation-dependent process. By contrast, excess Treg cells are removed by attrition, dependent on the Bim-initiated Bak- and Bax-dependent intrinsic apoptotic pathway. The antiapoptotic proteins Bcl-xL and Bcl-2 were dispensable for survival of Treg cells, whereas Mcl-1 was critical for survival of Treg cells, and the loss of this antiapoptotic protein caused fatal autoimmunity. Together, these data define the active processes by which Treg cells maintain homeostasis via critical survival pathways.


Subject(s)
Apoptosis/immunology , Forkhead Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Apoptosis/genetics , Cell Survival/genetics , Cell Survival/immunology , Female , Forkhead Transcription Factors/genetics , Gene Deletion , Homeostasis/immunology , Interleukin-2/metabolism , Lymphocyte Count , Male , Mice , Mice, Knockout , Myeloid Cell Leukemia Sequence 1 Protein , Proto-Oncogene Proteins c-bcl-2/genetics , Signal Transduction
6.
Proc Natl Acad Sci U S A ; 119(15): e2120149119, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35394861

ABSTRACT

Immunological tolerance is established and maintained by a diverse array of safeguards that work together to protect against autoimmunity. Despite the identification of numerous tolerogenic processes, the basis for cooperation among them remains poorly understood. We sought to identify synergy among several well-defined tolerance mediators that alone provide protection only from mild autoimmune symptoms in C57BL/6 mice: BIM, AIRE, CBL-B, and PD-1. Survey of a range of compound mutant mice revealed that the combined loss of the autoimmune regulator, AIRE, with PD-1 unleashed a spontaneous, lethal autoimmune disease. Pdcd1−/−Aire−/− mice succumbed to cachexia before adulthood, with near-complete destruction of the exocrine pancreas. Such fatal autoimmunity was not observed in Pdcd1−/−Bim−/−, Bim−/−Aire−/−, or Cblb−/−Bim−/− mice, suggesting that the cooperation between AIRE-mediated and PD-1­mediated tolerance was particularly potent. Immune profiling revealed largely normal development of FOXP3+ regulatory T (Treg) cells in Pdcd1−/−Aire−/− mice, yet excessive, early activation of effector T cells. Adoptive transfer experiments demonstrated that autoimmune exocrine pancreatitis was driven by conventional CD4+ T cells and could not be prevented by the cotransfer of Treg cells from wild-type mice. The development of autoimmunity in mixed bone marrow chimeras supported these observations, indicating that failure of recessive tolerance was responsible for disease. These findings reveal a potent tolerogenic axis between AIRE and PD-1 that has implications for our understanding of how immune checkpoint blockade might synergize with subclinical defects in central tolerance to elicit autoimmune disease.


Subject(s)
Autoimmune Pancreatitis , Immune Tolerance , Peripheral Tolerance , Programmed Cell Death 1 Receptor , Transcription Factors , Animals , Autoimmune Pancreatitis/genetics , Autoimmune Pancreatitis/immunology , Autoimmunity/genetics , Immune Tolerance/genetics , Mice , Mice, Inbred C57BL , Peripheral Tolerance/genetics , Peripheral Tolerance/immunology , Programmed Cell Death 1 Receptor/genetics , Programmed Cell Death 1 Receptor/physiology , Thymus Gland/immunology , Transcription Factors/genetics , Transcription Factors/physiology , AIRE Protein
7.
Blood ; 140(20): 2127-2141, 2022 11 17.
Article in English | MEDLINE | ID: mdl-35709339

ABSTRACT

Venetoclax (VEN) inhibits the prosurvival protein BCL2 to induce apoptosis and is a standard therapy for chronic lymphocytic leukemia (CLL), delivering high complete remission rates and prolonged progression-free survival in relapsed CLL but with eventual loss of efficacy. A spectrum of subclonal genetic changes associated with VEN resistance has now been described. To fully understand clinical resistance to VEN, we combined single-cell short- and long-read RNA-sequencing to reveal the previously unappreciated scale of genetic and epigenetic changes underpinning acquired VEN resistance. These appear to be multilayered. One layer comprises changes in the BCL2 family of apoptosis regulators, especially the prosurvival family members. This includes previously described mutations in BCL2 and amplification of the MCL1 gene but is heterogeneous across and within individual patient leukemias. Changes in the proapoptotic genes are notably uncommon, except for single cases with subclonal losses of BAX or NOXA. Much more prominent was universal MCL1 gene upregulation. This was driven by an overlying layer of emergent NF-κB (nuclear factor kappa B) activation, which persisted in circulating cells during VEN therapy. We discovered that MCL1 could be a direct transcriptional target of NF-κB. Both the switch to alternative prosurvival factors and NF-κB activation largely dissipate following VEN discontinuation. Our studies reveal the extent of plasticity of CLL cells in their ability to evade VEN-induced apoptosis. Importantly, these findings pinpoint new approaches to circumvent VEN resistance and provide a specific biological justification for the strategy of VEN discontinuation once a maximal response is achieved rather than maintaining long-term selective pressure with the drug.


Subject(s)
Antineoplastic Agents , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , NF-kappa B , Drug Resistance, Neoplasm/genetics , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/therapeutic use , Recurrence , Antineoplastic Agents/therapeutic use
8.
Nat Immunol ; 13(2): 181-7, 2011 Dec 18.
Article in English | MEDLINE | ID: mdl-22179202

ABSTRACT

Thymic output is a dynamic process, with high activity at birth punctuated by transient periods of involution during infection. Interferon-α (IFN-α) is a critical molecular mediator of pathogen-induced thymic involution, yet despite the importance of thymic involution, relatively little is known about the molecular integrators that establish sensitivity. Here we found that the microRNA network dependent on the endoribonuclease Dicer, and specifically microRNA miR-29a, was critical for diminishing the sensitivity of the thymic epithelium to simulated infection signals, protecting the thymus against inappropriate involution. In the absence of Dicer or the miR-29a cluster in the thymic epithelium, expression of the IFN-α receptor by the thymic epithelium was higher, which allowed suboptimal signals to trigger rapid loss of thymic cellularity.


Subject(s)
DEAD-box RNA Helicases/immunology , MicroRNAs/immunology , Receptor, Interferon alpha-beta/immunology , Ribonuclease III/immunology , Thymus Gland/immunology , Animals , Arthritis/genetics , Arthritis/immunology , DEAD-box RNA Helicases/genetics , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Male , Mice , Ribonuclease III/genetics , Thymus Gland/cytology
9.
J Immunol ; 207(2): 363-370, 2021 07 15.
Article in English | MEDLINE | ID: mdl-34644259

ABSTRACT

T cell development occurs in the thymus, where uncommitted progenitors are directed into a range of sublineages with distinct functions. The goal is to generate a TCR repertoire diverse enough to recognize potential pathogens while remaining tolerant of self. Decades of intensive research have characterized the transcriptional programs controlling critical differentiation checkpoints at the population level. However, greater precision regarding how and when these programs orchestrate differentiation at the single-cell level is required. Single-cell RNA sequencing approaches are now being brought to bear on this question, to track the identity of cells and analyze their gene expression programs at a resolution not previously possible. In this review, we discuss recent advances in the application of these technologies that have the potential to yield unprecedented insight to T cell development.


Subject(s)
Cell Differentiation/immunology , T-Lymphocytes/immunology , Animals , Humans , Sequence Analysis, RNA/methods , Thymus Gland/immunology
10.
J Immunol ; 205(5): 1207-1216, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32747505

ABSTRACT

MHC class II (MHC II) displays peptides at the cell surface, a process critical for CD4+ T cell development and priming. Ubiquitination is a mechanism that dictates surface MHC II with the attachment of a polyubiquitin chain to peptide-loaded MHC II, promoting its traffic away from the plasma membrane. In this study, we have examined how MHC II ubiquitination impacts the composition and function of both conventional CD4+ T cell and regulatory T cell (Treg) compartments. Responses were examined in two models of altered MHC II ubiquitination: MHCIIKRKI /KI mice that express a mutant MHC II unable to be ubiquitinated or mice that lack membrane-associated RING-CH 8 (MARCH8), the E3 ubiquitin ligase responsible for MHC II ubiquitination specifically in thymic epithelial cells. Conventional CD4+ T cell populations in thymus, blood, and spleen of MHCIIKRKI/KI and March8 -/- mice were largely unaltered. In MLRs, March8 -/-, but not MHCIIKRKI/KI, CD4+ T cells had reduced reactivity to both self- and allogeneic MHC II. Thymic Treg were significantly reduced in MHCIIKRKI/KI mice, but not March8 -/- mice, whereas splenic Treg were unaffected. Neither scenario provoked autoimmunity, with no evidence of immunohistopathology and normal levels of autoantibody. In summary, MHC II ubiquitination in specific APC types does not have a major impact on the conventional CD4+ T cell compartment but is important for Treg development.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Histocompatibility Antigens Class II/immunology , T-Lymphocytes, Regulatory/immunology , Ubiquitination/immunology , Animals , Antigen Presentation/immunology , Dendritic Cells/immunology , Epithelial Cells/immunology , Female , Male , Mice , Mice, Inbred C57BL , Spleen/immunology , Thymus Gland/immunology , Ubiquitin/immunology , Ubiquitin-Protein Ligases/immunology
12.
Blood ; 133(16): 1729-1741, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30755422

ABSTRACT

Somatically acquired mutations in PHF6 (plant homeodomain finger 6) frequently occur in hematopoietic malignancies and often coincide with ectopic expression of TLX3. However, there is no functional evidence to demonstrate whether these mutations contribute to tumorigenesis. Similarly, the role of PHF6 in hematopoiesis is unknown. We report here that Phf6 deletion in mice resulted in a reduced number of hematopoietic stem cells (HSCs), an increased number of hematopoietic progenitor cells, and an increased proportion of cycling stem and progenitor cells. Loss of PHF6 caused increased and sustained hematopoietic reconstitution in serial transplantation experiments. Interferon-stimulated gene expression was upregulated in the absence of PHF6 in hematopoietic stem and progenitor cells. The numbers of hematopoietic progenitor cells and cycling hematopoietic stem and progenitor cells were restored to normal by combined loss of PHF6 and the interferon α and ß receptor subunit 1. Ectopic expression of TLX3 alone caused partially penetrant leukemia. TLX3 expression and loss of PHF6 combined caused fully penetrant early-onset leukemia. Our data suggest that PHF6 is a hematopoietic tumor suppressor and is important for fine-tuning hematopoietic stem and progenitor cell homeostasis.


Subject(s)
Hematopoietic Stem Cells/cytology , Homeodomain Proteins/metabolism , Leukemia/etiology , Repressor Proteins/physiology , Animals , Carcinogenesis , Gene Expression Regulation , Humans , Mice , Mice, Knockout , Receptors, Interferon , Repressor Proteins/genetics , Tumor Suppressor Proteins
13.
Immunity ; 37(3): 451-62, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-22960223

ABSTRACT

Although the proapoptotic BH3-only protein, Bim, is required for deletion of autoreactive thymocytes, Bim-deficient mice do not succumb to extensive organ-specific autoimmune disease. To determine whether other BH3-only proteins safeguard tolerance in the absence of Bim, we screened mice lacking Bim as well as other BH3-only proteins. Most strains showed no additional defects; however, mice deficient for both Puma and Bim spontaneously developed autoimmunity in multiple organs, and their T cells could transfer organ-specific autoimmunity. Puma- and Bim-double-deficient mice had a striking accumulation of mature, single-positive thymocytes, suggesting an additional defect in thymic deletion was the basis for disease. Transgenic mouse models of thymocyte deletion by peripheral neoantigens confirmed that the loss of Bim and Puma allowed increased numbers of autoreactive thymocytes to escape deletion. Our data show that Puma cooperates with Bim to impose a thymic-deletion checkpoint to peripheral self-antigens and cement the notion that defects in apoptosis alone are sufficient to cause autoimmune disease.


Subject(s)
Apoptosis Regulatory Proteins/immunology , Autoantigens/immunology , Autoimmunity/immunology , Membrane Proteins/immunology , Proto-Oncogene Proteins/immunology , Thymocytes/immunology , Tumor Suppressor Proteins/immunology , Animals , Apoptosis/genetics , Apoptosis/immunology , Apoptosis Regulatory Proteins/genetics , Autoimmunity/genetics , Bcl-2-Like Protein 11 , Cell Differentiation/genetics , Cell Differentiation/immunology , Female , Flow Cytometry , Male , Membrane Proteins/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/immunology , Self Tolerance/genetics , Self Tolerance/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Thymocytes/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/immunology , Tumor Suppressor Proteins/genetics
14.
Immunol Rev ; 277(1): 9-20, 2017 05.
Article in English | MEDLINE | ID: mdl-28462532

ABSTRACT

The differentiation of hematopoietic precursors into the many functionally distinct T-cell types produced by the thymus is a complex process. It proceeds through a series of stages orchestrated by a variety of thymic microenvironments that shape the T-cell developmental processes. Numerous cytokine and cell surface receptors direct thymocyte differentiation but the primary determinant of cell fate is the engagement of the T-cell antigen receptor (TCR). The strength of the TCR signal and the maturation stage of the thymocyte receiving it can direct the various differentiation programs or, alternatively, end the process by inducing cell death. The regulation of thymocyte death is critical for the efficiency of thymic T-cell differentiation and the preservation of immune tolerance. A detailed knowledge of mechanisms that eliminate thymocytes from the T-cell repertoire is essential to understand the "logic" of T-cell selection in the thymus. This review focuses on the central role of the BCL-2 family of proteins in the apoptotic checkpoints that punctuate thymocyte differentiation and the consequences of defects in these processes.


Subject(s)
Proto-Oncogene Proteins c-bcl-2/metabolism , T-Lymphocytes/physiology , Thymocytes/physiology , Thymus Gland/immunology , Animals , Cell Death , Cell Differentiation , Cellular Microenvironment , Central Tolerance , Hematopoiesis , Humans , Receptors, Antigen, T-Cell/metabolism
15.
Blood ; 130(23): 2504-2515, 2017 12 07.
Article in English | MEDLINE | ID: mdl-28972012

ABSTRACT

T-cell differentiation is governed by interactions with thymic epithelial cells (TECs) and defects in this process undermine immune function and tolerance. To uncover new strategies to restore thymic function and adaptive immunity in immunodeficiency, we sought to determine the molecular mechanisms that control life and death decisions in TECs. Guided by gene expression profiling, we created mouse models that specifically deleted prosurvival genes in TECs. We found that although BCL-2 and BCL-XL were dispensable for TEC homeostasis, MCL-1 deficiency impacted on TECs as early as embryonic day 15.5, resulting in early thymic atrophy and T-cell lymphopenia, with near complete loss of thymic tissue by 2 months of age. MCL-1 was not necessary for TEC differentiation but was continually required for the survival of mature cortical and medullary TECs and the maintenance of thymic architecture. A screen of TEC trophic factors in organ cultures showed that epidermal growth factor upregulated MCL-1 via MAPK/ERK kinase activity, providing a molecular mechanism for the support of TEC survival. This signaling axis governing TEC survival and thymic function represents a new target for strategies for thymic protection and regeneration.


Subject(s)
Cell Survival/genetics , Epithelial Cells/metabolism , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Thymus Gland/physiology , Animals , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Survival/drug effects , Epidermal Growth Factor/pharmacology , Epithelial Cells/drug effects , Female , Gene Expression , Gene Expression Profiling , Gene Expression Regulation , Gene Knockdown Techniques , Homeostasis/genetics , Immunophenotyping , Lymphopenia/genetics , Male , Mice , Mice, Knockout , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Thymocytes/cytology , Thymocytes/immunology , Thymocytes/metabolism , Thymus Gland/pathology , bcl-X Protein/genetics , bcl-X Protein/metabolism
16.
J Immunol ; 196(2): 645-54, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26673141

ABSTRACT

γδ T cells respond to molecules upregulated following infection or cellular stress using both TCR and non-TCR molecules. The importance of innate signals versus TCR ligation varies greatly. Both innate-like IL-17-producing γδ T (γδT-17) and IFN-γ-producing γδ T (γδT-IFNγ) subsets tune the sensitivity of their TCR following thymic development, allowing robust responses to inflammatory cytokines in the periphery. The remaining conventional γδ T cells retain high TCR responsiveness. We determined homeostatic mechanisms that govern these various subsets in the peripheral lymphoid tissues. We found that, although innate-like γδT-17 and γδT-IFNγ cells share elements of thymic development, they diverge when it comes to homeostasis. Both exhibit acute sensitivity to cytokines compared with conventional γδ T cells, but they do not monopolize the same cytokine. γδT-17 cells rely exclusively on IL-7 for turnover and survival, aligning them with NKT17 cells; IL-7 ligation triggers proliferation, as well as promotes survival, upregulating Bcl-2 and Bcl-xL. γδT-IFNγ cells instead depend heavily on IL-15. They display traits analogous to memory CD8(+) T cells and upregulate Bcl-xL and Mcl-1 upon cytokine stimulation. The conventional γδ T cells display low sensitivity to cytokine-alone stimulation and favor IL-7 for their turnover, characteristics reminiscent of naive αß T cells, suggesting that they may also require tonic TCR signaling for population maintenance. These survival constraints suggest that γδ T cell subsets do not directly compete with each other for cytokines, but instead fall into resource niches with other functionally similar lymphocytes.


Subject(s)
Homeostasis/immunology , Immunity, Innate/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocytes/immunology , Adoptive Transfer , Animals , Cytokines/immunology , Flow Cytometry , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-17/biosynthesis , Interleukin-17/immunology , Mice , Mice, Inbred C57BL , Receptors, Antigen, T-Cell, gamma-delta
17.
Proc Natl Acad Sci U S A ; 110(7): 2599-604, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23349374

ABSTRACT

Dysregulation of the "intrinsic" apoptotic pathway is associated with the development of cancer and autoimmune disease. Bak and Bax are two proapoptotic members of the Bcl-2 protein family with overlapping, essential roles in the intrinsic apoptotic pathway. Their activity is critical for the control of cell survival during lymphocyte development and homeostasis, best demonstrated by defects in thymic T-cell differentiation and peripheral lymphoid homeostasis caused by their combined loss. Because most bak(-/-)bax(-/-) mice die perinatally, the roles of Bax and Bak in immunological tolerance and prevention of autoimmune disease remain unclear. We show that mice reconstituted with a Bak/Bax doubly deficient hematopoietic compartment develop a fatal systemic lupus erythematosus-like autoimmune disease characterized by hypergammaglobulinemia, autoantibodies, lymphadenopathy, glomerulonephritis, and vasculitis. Importantly, these mice also develop a multiorgan autoimmune disease with autoantibodies against most solid glandular structures and evidence of glandular atrophy and necrotizing vasculitis. Interestingly, similar albeit less severe pathology was observed in mice containing a hematopoietic compartment deficient for only Bak, a phenotype reminiscent of the disease seen in patients with point mutations in BAK. These studies demonstrate a critical role for Bak and an ancillary role for Bax in safeguarding immunological tolerance and prevention of autoimmune disease. This suggests that direct activators of the intrinsic apoptotic pathway, such as BH3 mimetics, may be useful for treatment of diverse autoimmune diseases.


Subject(s)
Apoptosis/immunology , Autoimmune Diseases/immunology , bcl-2 Homologous Antagonist-Killer Protein/immunology , bcl-2-Associated X Protein/immunology , Animals , Autoantibodies/immunology , Autoimmune Diseases/pathology , Blotting, Western , Chemokines/blood , Crosses, Genetic , Cytokines/blood , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Histological Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Fluorescence , bcl-2 Homologous Antagonist-Killer Protein/deficiency , bcl-2-Associated X Protein/deficiency
18.
Eur J Immunol ; 44(12): 3504-7, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25410151

ABSTRACT

FoxP3(+) regulatory T (Treg) cells comprise a highly dynamic population that restrains autoreactivity. Although complete or long-term depletion of Foxp3(+) CD4(+) Treg cells in adult mice has been shown to result in chronic inflammation and autoimmune disease, the impact of transient Treg-cell depletion on self-reactive responses is poorly defined. A new study published in this issue of the European Journal of Immunology [Eur. J. Immunol. 2014. 44: 3621-3631] shows that, although transient depletion of Treg cells in mice is swiftly followed by recovery of Treg-cell numbers, the "rebounded" population fails to maintain tolerance, culminating in severe autoimmune gastritis. This commentary explores new questions about the quantitative and qualitative aspects of Treg-cell function in immunological tolerance raised by this study and others.


Subject(s)
Autoimmune Diseases/immunology , Gastritis/immunology , Immune Tolerance , Lymphocyte Depletion , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/pathology , Forkhead Transcription Factors/immunology , Gastritis/pathology , Mice , T-Lymphocytes, Regulatory/pathology
19.
Eur J Immunol ; 43(1): 75-84, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23041971

ABSTRACT

The autoimmune regulator (Aire), mediates central tolerance of peripheral self. Its activity in thymic epithelial cells (TECs) directs the ectopic expression of thousands of tissue-restricted antigens (TRAs), causing the deletion of autoreactive thymocytes. The molecular mechanisms orchestrating the breadth of transcriptional regulation by Aire remain unknown. One prominent model capable of explaining both the uniquely high number of Aire-dependent targets and their specificity posits that tissue-specific transcription factors induced by Aire directly activate their canonical targets, exponentially adding to the total number of Aire-dependent TRAs. To test this "Hierarchical Transcription" model, we analysed mice deficient in the pancreatic master transcription factor pancreatic and duodenal homeobox 1 (Pdx1), specifically in TECs (Pdx1(ΔFoxn1) ), for the expression and tolerance of pancreatic TRAs. Surprisingly, we found that lack of Pdx1 in TECs did not reduce the transcription of insulin or somatostatin, or alter glucagon expression. Moreover, in a model of thymic deletion driven by a neo-TRA under the control of the insulin promoter, Pdx1 in TECs was not required to affect thymocyte deletion or the generation of regulatory T (Treg) cells. These findings suggest that the capacity of Aire to regulate expression of a huge array of TRAs relies solely on an unconventional transcriptional mechanism, without intermediary transcription factors.


Subject(s)
Central Tolerance , Homeodomain Proteins/metabolism , Pancreas/immunology , T-Lymphocytes/immunology , Thymus Gland/immunology , Trans-Activators/metabolism , Transcription Factors/metabolism , Animals , Autoantigens/genetics , Autoantigens/metabolism , Autoimmunity , Cells, Cultured , Clonal Deletion/genetics , Epithelial Cells/immunology , Homeodomain Proteins/genetics , Insulin/genetics , Insulin/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Immunological , Organ Specificity , Promoter Regions, Genetic/genetics , Trans-Activators/genetics , Transcription Factors/genetics , Transcription, Genetic , AIRE Protein
20.
Nat Cell Biol ; 26(1): 138-152, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38216737

ABSTRACT

Inheritance of a BRCA2 pathogenic variant conveys a substantial life-time risk of breast cancer. Identification of the cell(s)-of-origin of BRCA2-mutant breast cancer and targetable perturbations that contribute to transformation remains an unmet need for these individuals who frequently undergo prophylactic mastectomy. Using preneoplastic specimens from age-matched, premenopausal females, here we show broad dysregulation across the luminal compartment in BRCA2mut/+ tissue, including expansion of aberrant ERBB3lo luminal progenitor and mature cells, and the presence of atypical oestrogen receptor (ER)-positive lesions. Transcriptional profiling and functional assays revealed perturbed proteostasis and translation in ERBB3lo progenitors in BRCA2mut/+ breast tissue, independent of ageing. Similar molecular perturbations marked tumours bearing BRCA2-truncating mutations. ERBB3lo progenitors could generate both ER+ and ER- cells, potentially serving as cells-of-origin for ER-positive or triple-negative cancers. Short-term treatment with an mTORC1 inhibitor substantially curtailed tumorigenesis in a preclinical model of BRCA2-deficient breast cancer, thus uncovering a potential prevention strategy for BRCA2 mutation carriers.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Mastectomy , Mutation , BRCA2 Protein/genetics , Carcinogenesis , Cell Transformation, Neoplastic , BRCA1 Protein/genetics
SELECTION OF CITATIONS
SEARCH DETAIL