Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
J Biol Chem ; 299(7): 104882, 2023 07.
Article in English | MEDLINE | ID: mdl-37269945

ABSTRACT

Biosynthesis of the various lipid species that compose cellular membranes and lipid droplets depends on the activity of multiple enzymes functioning in coordinated pathways. The flux of intermediates through lipid biosynthetic pathways is regulated to respond to nutritional and environmental demands placed on the cell necessitating that there be flexibility in pathway activity and organization. This flexibility can in part be achieved through the organization of enzymes into metabolon supercomplexes. However, the composition and organization of such supercomplexes remain unclear. Here, we identified protein-protein interactions between acyltransferases Sct1, Gpt2, Slc1, Dga1, and the Δ9 acyl-CoA desaturase Ole1 in Saccharomyces cerevisiae. We further determined that a subset of these acyltransferases interact with each other independent of Ole1. We show that truncated versions of Dga1 lacking the carboxyl-terminal 20 amino acid residues are nonfunctional and unable to bind Ole1. Furthermore, charged-to-alanine scanning mutagenesis revealed that a cluster of charged residues near the carboxyl terminus was required for the interaction with Ole1. Mutation of these charged residues disrupted the interaction between Dga1 and Ole1 but allowed Dga1 to retain catalytic activity and to induce lipid droplet formation. These data support the formation of a complex of acyltransferases involved in lipid biosynthesis that interacts with Ole1, the sole acyl-CoA desaturase in S. cerevisiae, that can channel unsaturated acyl chains toward phospholipid or triacylglycerol synthesis. This desaturasome complex may provide the architecture that allows for the necessary flux of de novo-synthesized unsaturated acyl-CoA to phospholipid or triacylglycerol synthesis as demanded by cellular requirements.


Subject(s)
1-Acylglycerol-3-Phosphate O-Acyltransferase , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Stearoyl-CoA Desaturase , 1-Acylglycerol-3-Phosphate O-Acyltransferase/metabolism , Acyltransferases/metabolism , Fatty Acid Desaturases/genetics , Phospholipids/genetics , Phospholipids/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Stearoyl-CoA Desaturase/genetics , Stearoyl-CoA Desaturase/metabolism , Triglycerides/metabolism
2.
Methods Mol Biol ; 2579: 145-168, 2022.
Article in English | MEDLINE | ID: mdl-36045205

ABSTRACT

The cell division cycle is a fundamental process required for proliferation of all living organisms. The eukaryotic cell cycle follows a basic template with an ordered series of events beginning with G1 (Gap1) phase, followed successively by S (Synthesis) phase, G2 (Gap 2) phase, and M-phase (Mitosis). The process is tightly regulated in response to signals from both the internal and external milieu. The budding yeast S. cerevisiae is an outstanding model for the study of the cell cycle and its regulatory process. The basic events and regulatory processes of the S. cerevisiae cell cycle are highly conserved with other eukaryotes. The organism grows rapidly in simple medium, has a sequenced annotated genome, well-established genetics, and is amenable to analysis by proteomics and microscopy. Additionally, a range of tools and techniques are available to generate cultures of S. cerevisiae that are homogenously arrested or captured at specific phases of the cell cycle and upon release from that arrest these can be used to monitor cell cycle events as the cells synchronously proceed through a division cycle. In this chapter, we describe a series of commonly used techniques that are used to generate synchronized populations of S. cerevisiae and provide an overview of methods that can be used to monitor the progression of the cells through the cell division cycle.


Subject(s)
Mitosis , Saccharomyces cerevisiae , Cell Count , Cell Cycle/genetics
SELECTION OF CITATIONS
SEARCH DETAIL