Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Am J Physiol Gastrointest Liver Physiol ; 325(3): G265-G278, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37431575

ABSTRACT

Excessive alcohol intake is a major risk factor for pancreatitis, sensitizing the exocrine pancreas to stressors by mechanisms that remain obscure. Impaired autophagy drives nonalcoholic pancreatitis, but the effects of ethanol (EtOH) and alcoholic pancreatitis on autophagy are poorly understood. Here, we find that ethanol reduces autophagosome formation in pancreatic acinar cells, both in a mouse model of alcoholic pancreatitis induced by a combination of EtOH diet and cerulein (a CCK ortholog) and in EtOH+CCK-treated acinar cells (ex vivo model). Ethanol treatments decreased pancreatic level of LC3-II, a key mediator of autophagosome formation. This was caused by ethanol-induced upregulation of ATG4B, a cysteine protease that, cell dependently, regulates the balance between cytosolic LC3-I and membrane-bound LC3-II. We show that ATG4B negatively regulates LC3-II in acinar cells subjected to EtOH treatments. Ethanol raised ATG4B level by inhibiting its degradation, enhanced ATG4B enzymatic activity, and strengthened its interaction with LC3-II. We also found an increase in ATG4B and impaired autophagy in a dissimilar, nonsecretagogue model of alcoholic pancreatitis induced by EtOH plus palmitoleic acid. Adenoviral ATG4B overexpression in acinar cells greatly reduced LC3-II and inhibited autophagy. Furthermore, it aggravated trypsinogen activation and necrosis, mimicking key responses of ex vivo alcoholic pancreatitis. Conversely, shRNA Atg4B knockdown enhanced autophagosome formation and alleviated ethanol-induced acinar cell damage. The results reveal a novel mechanism, whereby ethanol inhibits autophagosome formation and thus sensitizes pancreatitis, and a key role of ATG4B in ethanol's effects on autophagy. Enhancing pancreatic autophagy, particularly by downregulating ATG4B, could be beneficial in mitigating the severity of alcoholic pancreatitis.NEW & NOTEWORTHY Ethanol sensitizes mice and humans to pancreatitis, but the underlying mechanisms remain obscure. Autophagy is important for maintaining pancreatic acinar cell homeostasis, and its impairment drives pancreatitis. This study reveals a novel mechanism, whereby ethanol inhibits autophagosome formation through upregulating ATG4B, a key cysteine protease. ATG4B upregulation inhibits autophagy in acinar cells and aggravates pathological responses of experimental alcoholic pancreatitis. Enhancing pancreatic autophagy, particularly by down-regulating ATG4B, could be beneficial for treatment of alcoholic pancreatitis.


Subject(s)
Cysteine Proteases , Pancreatitis, Alcoholic , Animals , Humans , Mice , Acinar Cells/metabolism , Autophagy , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Cysteine Proteases/metabolism , Ethanol/pharmacology , Pancreatitis, Alcoholic/genetics , Up-Regulation
2.
BMC Vet Res ; 18(1): 196, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35614473

ABSTRACT

BACKGROUND: In humans, codeine is a commonly prescribed analgesic that produces its therapeutic effect largely through metabolism to morphine. In some species, analgesic effects of morphine have also been attributed to the morphine-6-glucuronide (M6G) metabolite. Although an effective analgesic, administration of morphine to horses produces dose-dependent neuroexcitation at therapeutic doses. Oral administration of codeine at a dose of 0.6 mg/kg has been shown to generate morphine and M6G concentrations comparable to that observed following administration of clinically effective doses of morphine, without the concomitant adverse effects observed with morphine administration. Based on these results, it was hypothesized that codeine administration would provide effective analgesia with decreased adverse excitatory effects compared to morphine. Seven horses received a single oral dose of saline or 0.3, 0.6 or 1.2 mg/kg codeine or 0.2 mg/kg morphine IV (positive control) in a randomized balanced 5-way cross-over design. Blood samples were collected up to 72 hours post administration, codeine, codeine 6-glucuronide, norcodeine morphine, morphine 3-glucuronide and M6G concentrations determined by liquid chromatography- mass spectrometry and pharmacokinetic analysis performed. Pre- and post-drug related behavior, locomotor activity, heart rate and gastrointestinal borborygmi were recorded. Response to noxious stimuli was evaluated by determining thermal threshold latency. RESULTS: Morphine concentrations were highest in the morphine dose group at all times post administration, however, M6G concentrations were significantly higher in all the codeine dose groups compared to the morphine group starting at 1 hour post drug administration and up to 72-hours in the 1.2 mg/kg group. With the exception of one horse that exhibited signs of colic following administration of 0.3 and 0.6 mg/kg, codeine administration was well tolerated. Morphine administration, led to signs of agitation, tremors and excitation. There was not a significant effect on thermal nociception in any of the dose groups studied. CONCLUSIONS: The current study describes the metabolic profile and pharmacokinetics of codeine in horses and provides information that can be utilized in the design of future studies to understand the anti-nociceptive and analgesic effects of opioids in this species with the goal of promoting judicious and safe use of this important class of drugs.


Subject(s)
Codeine , Glucuronides , Nociception , Analgesics, Opioid , Animals , Codeine/adverse effects , Codeine/pharmacokinetics , Glucuronides/adverse effects , Glucuronides/pharmacokinetics , Horses , Morphine , Morphine Derivatives/adverse effects , Morphine Derivatives/pharmacokinetics
3.
J Vet Pharmacol Ther ; 44(5): 745-753, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34173263

ABSTRACT

Flunixin meglumine is a highly efficacious nonsteroidal anti-inflammatory drug commonly used in equine medicine and especially in performance horses. Recently, a new transdermal flunixin meglumine product has been approved for use in cattle. Although not currently approved for use in the horse, the convenience of this product may prove appealing for use in horses, warranting study. Six horses were administered a single transdermal dose of 500 mg and blood and urine samples collected for up to 96 h post-administration. Serum for determination of thromboxane concentrations and whole blood samples was collected at various time and challenged with lipopolysaccharide, calcium ionophore, or methanol to induce ex vivo synthesis of eicosanoids. Concentrations of flunixin, 5-OH flunixin, and eicosanoids were measured using LC-MS/MS and non-compartmental pharmacokinetic analysis performed on concentration data. Serum concentrations of flunixin and 5-OH flunixin were above the limit of quantitation at 96 h post-administration in both serum and urine. The mean (range) for Cmax , Tmax and the terminal half-life were 515.6 (369.7-714.0) ng/ml, 8.67 (8.0 12.0) h, and 22.4 (18.3-42.5) h, respectively. Following transdermal administration, based on effects on eicosanoid synthesis, flunixin meglumine inhibited cyclooxygenase 1 and 2 and 15-lipooxygenase activity, with anti-inflammatory effects lasting for 24-72 h.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacokinetics , Clonixin/pharmacokinetics , Horse Diseases , Administration, Cutaneous , Animals , Biomarkers , Cattle , Chromatography, Liquid/veterinary , Clonixin/analogs & derivatives , Horse Diseases/drug therapy , Horses , Inflammation/veterinary , Tandem Mass Spectrometry/veterinary
4.
Vet Anaesth Analg ; 47(5): 694-704, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32654915

ABSTRACT

OBJECTIVE: To describe the pharmacokinetics and selected pharmacodynamic variables of codeine and its metabolites in Thoroughbred horses following a single oral administration. STUDY DESIGN: Prospective experimental study. ANIMALS: A total of 12 Thoroughbred horses, nine geldings and three mares, aged 4-8 years. METHODS: Horses were administered codeine (0.6 mg kg-1) orally and blood was collected before administration and at various times until 120 hours post administration. Plasma and urine samples were collected and analyzed for codeine and its metabolites by liquid chromatography-mass spectrometry, and plasma pharmacokinetics were determined. Heart rate and rhythm, step counts, packed cell volume and total plasma protein were measured before and 4 hours after administration. RESULTS: Codeine was rapidly converted to the metabolites norcodeine, codeine-6-glucuronide (C6G), morphine, morphine-3-glucuronide (M3G) and morphine-6-glucuronide (M6G). Plasma codeine concentrations were best represented using a two-compartment model. The Cmax, tmax and elimination t½ were 270.7 ± 136.0 ng mL-1, 0.438 ± 0.156 hours and 2.00 ± 0.534 hours, respectively. M3G was the main metabolite detected (Cmax 492.7 ± 35.5 ng mL-1), followed by C6G (Cmax 96.1 ± 33.8 ng mL-1) and M6G (Cmax 22.3 ± 4.96 ng mL-1). Morphine and norcodeine were the least abundant metabolites with Cmax of 3.17 ± 0.95 and 1.42 ± 0.79 ng mL-1, respectively. No significant adverse or excitatory effects were observed. CONCLUSIONS AND CLINICAL RELEVANCE: Following oral administration, codeine is rapidly metabolized to morphine, M3G, M6G, C6G and norcodeine in horses. Plasma concentrations of M6G, a presumed active metabolite of morphine, were comparable to concentrations reported previously following administration of an analgesic dose of morphine to horses. Codeine was well tolerated based on pharmacodynamic variables and behavioral observations.


Subject(s)
Codeine/pharmacokinetics , Horses/metabolism , Administration, Oral , Animals , Area Under Curve , Codeine/blood , Codeine/metabolism , Codeine/urine , Drug Administration Schedule , Female , Half-Life , Male
5.
Autophagy ; 16(11): 2084-2097, 2020 11.
Article in English | MEDLINE | ID: mdl-31942816

ABSTRACT

Pancreatitis is a common, sometimes fatal, disease of exocrine pancreas, initiated by damaged acinar cells. Recent studies implicate disordered macroautophagy/autophagy in pancreatitis pathogenesis. ATG8/LC3 protein is critical for autophagosome formation and a widely used marker of autophagic vacuoles. Transgenic GFP-LC3 mice are a valuable tool to investigate autophagy ; however, comparison of homeostatic and disease responses between GFP-LC3 and wild-type (WT) mice has not been done. We examined the effects of GFP-LC3 expression on autophagy, acinar cell function, and experimental pancreatitis. Unexpectedly, GFP-LC3 expression markedly increased endogenous LC3-II level in pancreas, caused by downregulation of ATG4B, the protease that deconjugates/delipidates LC3-II. By contrast, GFP-LC3 expression had lesser or no effect on autophagy in liver, lung and spleen. Autophagic flux analysis showed that autophagosome formation in GFP-LC3 acinar cells increased 3-fold but was not fully counterbalanced by increased autophagic degradation. Acinar cell (ex vivo) pancreatitis inhibited autophagic flux in WT and essentially blocked it in GFP-LC3 cells. In vivo pancreatitis caused autophagy impairment in WT mice, manifest by upregulation of LC3-II and SQSTM1/p62, increased number and size of autophagic vacuoles, and decreased level of TFEB, all of which were exacerbated in GFP-LC3 mice. GFP-LC3 expression affected key pancreatitis responses; most dramatically, it worsened increases in serum AMY (amylase), a diagnostic marker of acute pancreatitis, in several mouse models. The results emphasize physiological importance of autophagy for acinar cell function, demonstrate organ-specific effects of GFP-LC3 expression, and indicate that application of GFP-LC3 mice in disease models should be done with caution.Abbreviations: AP: acute pancreatitis; Arg-AP: L-arginine-induced acute pancreatitis; ATG: autophagy-related (protein); AVs: autophagic vacuoles; CCK: cholecystokinin-8; CDE: choline-deficient, D,L-ethionine supplemented diet; CER: caerulein (ortholog of CCK); CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ER: endoplasmic reticulum; LAMP: lysosomal-associated membrane protein; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; TEM: transmission electron microscopy; TFEB: transcription factor EB; ZG: zymogen granule(s).


Subject(s)
Autophagy/physiology , Endoplasmic Reticulum/metabolism , Lysosomes/metabolism , Pancreas, Exocrine/metabolism , Acinar Cells/metabolism , Animals , Autophagosomes/metabolism , Autophagy/drug effects , Disease Models, Animal , Mice, Transgenic , Pancreas, Exocrine/pathology , Pancreatitis/chemically induced , Pancreatitis/metabolism
6.
Biochem Pharmacol ; 168: 184-192, 2019 10.
Article in English | MEDLINE | ID: mdl-31295464

ABSTRACT

Despite their widespread popularity as sport and companion animals and published and anecdotal reports of vast difference in drug disposition and pharmacokinetics between individuals, studies describing equine drug metabolism are limited. It has been theorized that similar to humans, members of the CYP2D family in horses may be polymorphic in nature leading to differences in metabolism of substrates. This study aims to build on the limited current knowledge regarding P450 mediated metabolism in horses by describing the metabolism of the polymorphic CYP2D6 probe drug codeine in vitro. Codeine, at varying substrate concentrations, was incubated with equine liver microsomes (±UDPGA) and a panel of baculovirus expressed recombinant equine P450s. Parent drug and metabolite concentrations were determined using LC-MS/MS. Incubation of codeine in equine liver microsomes generated norcodeine, morphine, codeine glucuronide and morphine 3- and 6- glucuronide. In recombinant P450 assays, the newly described CYP2D82 was responsible for catalyzing the biotransformation of codeine to morphine (Km of 247.4 µM and a Vmax of 1.6 pmol/min/pmol P450). CYP2D82 is 80% homologous to the highly polymorphic CYP2D6 enzyme, which is responsible for biotransformation of codeine to morphine in humans. CYP3A95, which shares 79% sequence homology with human CYP3A4 and CYP2D50 catalyzed the conversion of codeine to norcodeine (Km of 104.1 and 526.9 µM, Vmax of 2.8 and 2.6 pmol/min/pmol P450). In addition to describing the P450 mediated metabolism of codeine, the current study offers a candidate probe drug that could be used in vivo to study the functional implications of polymorphisms in the CYP2D gene in horses.


Subject(s)
Codeine/metabolism , Cytochrome P-450 CYP2D6/metabolism , Microsomes, Liver/metabolism , Recombinant Proteins/metabolism , Animals , Biotransformation , Cells, Cultured , Chromatography, Liquid , Codeine/analogs & derivatives , Cytochrome P-450 CYP3A/metabolism , Female , Horses , Morphine/metabolism , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL