Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
BMC Infect Dis ; 19(1): 912, 2019 Oct 29.
Article in English | MEDLINE | ID: mdl-31664929

ABSTRACT

BACKGROUND: West Nile virus (WNV) circulates across Australia and was referred to historically as Kunjin virus (WNVKUN). WNVKUN has been considered more benign than other WNV strains circulating globally. In 2011, a more virulent form of the virus emerged during an outbreak of equine arboviral disease in Australia. METHODS: To better understand the emergence of this virulent phenotype and the mechanism by which pathogenicity is manifested in its host, cells were infected with either the virulent strain (NSW2012), or less pathogenic historical isolates, and their innate immune responses compared by digital immune gene expression profiling. Two different cell systems were used: a neuroblastoma cell line (SK-N-SH cells) and neuronal cells derived from induced pluripotent stem cells (iPSCs). RESULTS: Significant innate immune gene induction was observed in both systems. The NSW2012 isolate induced higher gene expression of two genes (IL-8 and CCL2) when compared with cells infected with less pathogenic isolates. Pathway analysis of induced inflammation-associated genes also indicated generally higher activation in infected NSW2012 cells. However, this differential response was not paralleled in the neuronal cultures. CONCLUSION: NSW2012 may have unique genetic characteristics which contributed to the outbreak. The data herein is consistent with the possibility that the virulence of NSW2012 is underpinned by increased induction of inflammatory genes.


Subject(s)
Disease Outbreaks , Immunity, Innate/genetics , Inflammation/genetics , West Nile Fever/epidemiology , West Nile virus/genetics , Australia/epidemiology , Cell Line, Tumor , Chemokine CCL2/genetics , Gene Expression , Gene Expression Profiling , Humans , Induced Pluripotent Stem Cells/cytology , Interleukin-8/genetics , Neurons/virology , Phenotype , Virulence , West Nile virus/pathogenicity
2.
Haematologica ; 103(12): 1997-2007, 2018 12.
Article in English | MEDLINE | ID: mdl-30076174

ABSTRACT

The process of maturation of reticulocytes into fully mature erythrocytes that occurs in the circulation is known to be characterized by a complex interplay between loss of cell surface area and volume, removal of remnant cell organelles and redundant proteins, and highly selective membrane and cytoskeletal remodeling. However, the mechanisms that underlie and drive these maturational processes in vivo are currently poorly understood and, at present, reticulocytes derived through in vitro culture fail to undergo the final transition to erythrocytes. Here, we used high-throughput proteomic methods to highlight differences between erythrocytes, cultured reticulocytes and endogenous reticulocytes. We identify a cytoskeletal protein, non-muscle myosin IIA (NMIIA) whose abundance and phosphorylation status differs between reticulocytes and erythrocytes and localized it in the proximity of autophagosomal vesicles. An ex vivo circulation system was developed to simulate the mechanical shear component of circulation and demonstrated that mechanical stimulus is necessary, but insufficient for reticulocyte maturation. Using this system in concurrence with non-muscle myosin II inhibition, we demonstrate the involvement of non-muscle myosin IIA in reticulocyte remodeling and propose a previously undescribed mechanism of shear stress-responsive vesicle clearance that is crucial for reticulocyte maturation.


Subject(s)
Cytoplasmic Vesicles/metabolism , Erythrocytes/metabolism , Myosin Type II/metabolism , Reticulocytes/metabolism , Cell Differentiation , Cells, Cultured , Cytoskeletal Proteins/metabolism , Erythrocytes/cytology , Erythropoiesis , Humans , Molecular Motor Proteins/metabolism , Myosin Heavy Chains/metabolism , Phosphorylation , Proteomics/methods , Reticulocytes/cytology
3.
Blood ; 126(15): 1831-4, 2015 Oct 08.
Article in English | MEDLINE | ID: mdl-26276668

ABSTRACT

During maturation to an erythrocyte, a reticulocyte must eliminate any residual organelles and reduce its surface area and volume. Here we show this involves a novel process whereby large, intact, inside-out phosphatidylserine (PS)-exposed autophagic vesicles are extruded. Cell surface PS is a well-characterized apoptotic signal initiating phagocytosis. In peripheral blood from patients after splenectomy or in patients with sickle cell disease (SCD), the number of circulating red cells exposing PS on their surface is elevated. We show that in these patients PS is present on the cell surface of red cells in large (∼1.4 µm) discrete areas corresponding to autophagic vesicles. The autophagic vesicles found on reticulocytes are identical to those observed on red cells from splenectomized individuals and patients with SCD. Our data suggest the increased thrombotic risk associated with splenectomy, and patients with hemoglobinopathies is a possible consequence of increased levels of circulating mature reticulocytes expressing inside-out PS-exposed autophagic vesicles because of asplenia.


Subject(s)
Anemia, Sickle Cell/blood , Anemia, Sickle Cell/pathology , Autophagy , Erythrocytes/pathology , Phosphatidylserines/metabolism , Reticulocytes/pathology , Blotting, Western , Case-Control Studies , Cell Proliferation , Cells, Cultured , Erythrocytes/metabolism , Flow Cytometry , Glycophorins/metabolism , Humans , Image Processing, Computer-Assisted , Phagocytosis , Phosphatidylserines/chemistry , Reticulocytes/metabolism , Splenectomy
4.
Blood ; 119(26): 6296-306, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22490681

ABSTRACT

The erythrocyte is one of the best characterized human cells. However, studies of the process whereby human reticulocytes mature to erythrocytes have been hampered by the difficulty of obtaining sufficient numbers of cells for analysis. In the present study, we describe an in vitro culture system producing milliliter quantities of functional mature human adult reticulocytes from peripheral blood CD34(+) cells. We show that the final stage of reticulocyte maturation occurs by a previously undescribed mechanism in which large glycophorin A-containing vesicles forming at the cytosolic face of the plasma membrane are internalized and fuse with autophagosomes before expulsion of the autophagosomal contents by exocytosis. Early reticulocyte maturation is characterized by the selective elimination of unwanted plasma membrane proteins (CD71, CD98, and ß1 integrin) through the endosome-exosome pathway. In contrast, late maturation is characterized by the generation of large glycophorin A-decorated vesicles of autophagic origin.


Subject(s)
Exocytosis/physiology , Glycophorins/metabolism , Membrane Fusion/physiology , Phagosomes/physiology , Reticulocytes/physiology , Transport Vesicles/physiology , Adult , Cell Differentiation , Cell Membrane/metabolism , Erythrocytes/physiology , Erythrocytes/ultrastructure , Humans , Microscopy, Confocal , Oxygen/metabolism , Phagosomes/metabolism , Reticulocytes/metabolism , Reticulocytes/ultrastructure , Transport Vesicles/metabolism
5.
Mol Ther Methods Clin Dev ; 22: 26-39, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34485592

ABSTRACT

Developing robust methodology for the sustainable production of red blood cells in vitro is essential for providing an alternative source of clinical-quality blood, particularly for individuals with rare blood group phenotypes. Immortalized erythroid progenitor cell lines are the most promising emergent technology for achieving this goal. We previously created the erythroid cell line BEL-A from bone marrow CD34+ cells that had improved differentiation and enucleation potential compared to other lines reported. In this study we show that our immortalization approach is reproducible for erythroid cells differentiated from bone marrow and also from far more accessible peripheral and cord blood CD34+ cells, consistently generating lines with similar improved erythroid performance. Extensive characterization of the lines shows them to accurately recapitulate their primary cell equivalents and provides a molecular signature for immortalization. In addition, we show that only cells at a specific stage of erythropoiesis, predominantly proerythroblasts, are amenable to immortalization. Our methodology provides a step forward in the drive for a sustainable supply of red cells for clinical use and for the generation of model cellular systems for the study of erythropoiesis in health and disease, with the added benefit of an indefinite expansion window for manipulation of molecular targets.

6.
Nat Commun ; 11(1): 3569, 2020 07 16.
Article in English | MEDLINE | ID: mdl-32678083

ABSTRACT

The clinically important MAM blood group antigen is present on haematopoietic cells of all humans except rare MAM-negative individuals. Its molecular basis is unknown. By whole-exome sequencing we identify EMP3, encoding epithelial membrane protein 3 (EMP3), as a candidate gene, then demonstrate inactivating mutations in ten known MAM-negative individuals. We show that EMP3, a purported tumour suppressor in various solid tumours, is expressed in erythroid cells. Disruption of EMP3 by CRISPR/Cas9 gene editing in an immortalised human erythroid cell line (BEL-A2) abolishes MAM expression. We find EMP3 to associate with, and stabilise, CD44 in the plasma membrane. Furthermore, cultured erythroid progenitor cells from MAM-negative individuals show markedly increased proliferation and higher reticulocyte yields, suggesting an important regulatory role for EMP3 in erythropoiesis and control of cell production. Our data establish MAM as a new blood group system and demonstrate an interaction of EMP3 with the cell surface signalling molecule CD44.


Subject(s)
Blood Group Antigens/genetics , Cell Proliferation , Erythroid Cells/cytology , Membrane Glycoproteins/genetics , Blood Group Antigens/chemistry , Blood Group Antigens/metabolism , Blood Platelets/metabolism , Cells, Cultured , Erythrocyte Membrane/metabolism , Erythroid Cells/metabolism , Humans , Hyaluronan Receptors/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Models, Molecular , Mutation , Phenotype , Protein Binding , Exome Sequencing
7.
Stem Cell Res Ther ; 10(1): 130, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036072

ABSTRACT

BACKGROUND: Pluripotent stem cells are attractive progenitor cells for the generation of erythroid cells in vitro as have expansive proliferative potential. However, although embryonic (ESC) and induced pluripotent (iPSC) stem cells can be induced to undergo erythroid differentiation, the majority of cells fail to enucleate and the molecular basis of this defect is unknown. One protein that has been associated with the initial phase of erythroid cell enucleation is the intermediate filament vimentin, with loss of vimentin potentially required for the process to proceed. METHODS: In this study, we used our established erythroid culture system along with western blot, PCR and interegation of comparative proteomic data sets to analyse the temporal expression profile of vimentin in erythroid cells differentiated from adult peripheral blood stem cells, iPSC and ESC throughout erythropoiesis. Confocal microscopy was also used to examine the intracellular localisation of vimentin. RESULTS: We show that expression of vimentin is turned off early during normal adult erythroid cell differentiation, with vimentin protein lost by the polychromatic erythroblast stage, just prior to enucleation. In contrast, in erythroid cells differentiated from iPSC and ESC, expression of vimentin persists, with high levels of both mRNA and protein even in orthochromatic erythroblasts. In the vimentin-positive iPSC orthochromatic erythroblasts, F-actin was localized around the cell periphery; however, in those rare cells captured undergoing enucleation, vimentin was absent and F-actin was re-localized to the enucleosome as found in normal adult orthrochromatic erythroblasts. CONCLUSION: As both embryonic and adult erythroid cells loose vimentin and enucleate, retention of vimentin by iPSC and ESC erythroid cells indicates an intrinsic defect. By analogy with avian erythrocytes which naturally retain vimentin and remain nucleated, retention in iPSC- and ESC-derived erythroid cells may impede enucleation. Our data also provide the first evidence that dysregulation of processes in these cells occurs from the early stages of differentiation, facilitating targeting of future studies.


Subject(s)
Erythropoiesis/physiology , Induced Pluripotent Stem Cells/metabolism , Proteomics/methods , Vimentin/metabolism , Cell Differentiation , Cells, Cultured , Erythroid Cells , Humans , Induced Pluripotent Stem Cells/cytology
8.
Nat Microbiol ; 4(5): 876-887, 2019 05.
Article in English | MEDLINE | ID: mdl-30886357

ABSTRACT

Arboviruses cycle between, and replicate in, both invertebrate and vertebrate hosts, which for Zika virus (ZIKV) involves Aedes mosquitoes and primates1. The viral determinants required for replication in such obligate hosts are under strong purifying selection during natural virus evolution, making it challenging to resolve which determinants are optimal for viral fitness in each host. Herein we describe a deep mutational scanning (DMS) strategy2-5 whereby a viral cDNA library was constructed containing all codon substitutions in the C-terminal 204 amino acids of ZIKV envelope protein (E). The cDNA library was transfected into C6/36 (Aedes) and Vero (primate) cells, with subsequent deep sequencing and computational analyses of recovered viruses showing that substitutions K316Q and S461G, or Q350L and T397S, conferred substantial replicative advantages in mosquito and primate cells, respectively. A 316Q/461G virus was constructed and shown to be replication-defective in mammalian cells due to severely compromised virus particle formation and secretion. The 316Q/461G virus was also highly attenuated in human brain organoids, and illustrated utility as a vaccine in mice. This approach can thus imitate evolutionary selection in a matter of days and identify amino acids key to the regulation of virus replication in specific host environments.


Subject(s)
DNA Mutational Analysis/methods , Viral Tropism , Zika Virus Infection/virology , Zika Virus/physiology , Aedes/virology , Animals , Biological Evolution , Chlorocebus aethiops , Female , Host Specificity , Humans , Mice , Mice, Inbred C57BL , Models, Molecular , Mosquito Vectors/virology , Mutation , Selection, Genetic , Vero Cells , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/genetics , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus/chemistry , Zika Virus/genetics
9.
Nat Commun ; 8: 14750, 2017 03 14.
Article in English | MEDLINE | ID: mdl-28290447

ABSTRACT

With increasing worldwide demand for safe blood, there is much interest in generating red blood cells in vitro as an alternative clinical product. However, available methods for in vitro generation of red cells from adult and cord blood progenitors do not yet provide a sustainable supply, and current systems using pluripotent stem cells as progenitors do not generate viable red cells. We have taken an alternative approach, immortalizing early adult erythroblasts generating a stable line, which provides a continuous supply of red cells. The immortalized cells differentiate efficiently into mature, functional reticulocytes that can be isolated by filtration. Extensive characterization has not revealed any differences between these reticulocytes and in vitro-cultured adult reticulocytes functionally or at the molecular level, and importantly no aberrant protein expression. We demonstrate a feasible approach to the manufacture of red cells for clinical use from in vitro culture.


Subject(s)
Cell Culture Techniques/methods , Erythroblasts/cytology , Erythroid Cells/cytology , Reticulocytes/cytology , Cell Line , Erythroblasts/metabolism , Erythrocyte Transfusion , Erythrocytes/cytology , Erythrocytes/metabolism , Erythroid Cells/metabolism , Feasibility Studies , Humans , In Vitro Techniques , Reticulocytes/metabolism
10.
Autophagy ; 12(3): 590-1, 2016.
Article in English | MEDLINE | ID: mdl-27046252

ABSTRACT

Autophagy plays an important role in the removal of membrane bound organelles during the last stage of erythropoiesis as the enucleate reticulocyte matures into the erythrocyte. Autophagic vesicles are expelled from the reticulocyte as intact, inside-out, phosphatidylserine (PS) decorated vesicles and are subsequently removed during splenic passage. Failure to remove these vesicles causes the elevation in PS exposed red cells in Sickle Cell Disease.


Subject(s)
Anemia, Sickle Cell/pathology , Autophagy , Cell Differentiation , Reticulocytes/cytology , Cytoplasmic Vesicles/metabolism , Humans , Models, Biological
11.
PLoS One ; 9(7): e100874, 2014.
Article in English | MEDLINE | ID: mdl-25019302

ABSTRACT

Induced pluripotent stem cells (iPSC) are an attractive progenitor source for the generation of in vitro blood products. However, before iPSC-derived erythroid cells can be considered for therapeutic use their similarity to adult erythroid cells must be confirmed. We have analysed the proteome of erythroid cells differentiated from the iPSC fibroblast derived line (C19) and showed they express hallmark RBC proteins, including all those of the ankyrin and 4.1R complex. We next compared the proteome of erythroid cells differentiated from three iPSC lines (C19, OCE1, OPM2) with that of adult and cord blood progenitors. Of the 1989 proteins quantified <3% differed in level by 2-fold or more between the different iPSC-derived erythroid cells. When compared to adult cells, 11% of proteins differed in level by 2-fold or more, falling to 1.9% if a 5-fold threshold was imposed to accommodate slight inter-cell line erythropoietic developmental variation. Notably, the level of >30 hallmark erythroid proteins was consistent between the iPSC lines and adult cells. In addition, a sub-population (10-15%) of iPSC erythroid cells in each of the iPSC lines completed enucleation. Aberrant expression of some cytoskeleton proteins may contribute to the failure of the majority of the cells to enucleate since we detected some alterations in cytoskeletal protein abundance. In conclusion, the proteome of erythroid cells differentiated from iPSC lines is very similar to that of normal adult erythroid cells, but further work to improve the induction of erythroid cells in existing iPSC lines or to generate novel erythroid cell lines is required before iPSC-derived red cells can be considered suitable for transfusion therapy.


Subject(s)
Cell Differentiation , Erythroid Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Proteome/metabolism , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Tandem Mass Spectrometry
12.
PLoS One ; 8(5): e62654, 2013.
Article in English | MEDLINE | ID: mdl-23704882

ABSTRACT

The proliferation and terminal differentiation of erythroid progenitors occurs in human bone marrow within erythroblastic islands, specialised structures consisting of a central macrophage surrounded by developing erythroid cells. Many cell-cell and cell-matrix adhesive interactions maintain and regulate the co-ordinated daily production of reticulocytes. Erythroid cells express only one integrin, α4ß1, throughout differentiation, and its interactions with both macrophage Vascular Cell Adhesion Molecule-1 and with extracellular matrix fibronectin are critical for erythropoiesis. We observed that proerythroblasts expressed a broad tetraspanin phenotype, and investigated whether any tetraspanin could modulate integrin function. A specific association between α4ß1 and CD81, CD82 and CD151 was demonstrated by confocal microscopy and co-immune precipitation. We observed that antibodies to CD81 and CD82 augmented adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 but not to the fibronectin spliceoforms FnIII12-IIICS-15 and FnIII12-15. In contrast, different anti-CD151 antibodies augmented or inhibited adhesion of proerythroblasts to Vascular Cell Adhesion Molecule-1 and the fibronectin spliceoform FnIII12-IIICS-15 but not to FnIII12-15. These results strongly suggest that tetraspanins have a functional role in terminal erythropoiesis by modulating interactions of erythroblast α4ß1 with both macrophages and extracellular matrix.


Subject(s)
Erythroblasts/cytology , Erythroblasts/metabolism , Integrin alpha4beta1/metabolism , Kangai-1 Protein/metabolism , Tetraspanin 28/metabolism , Vascular Cell Adhesion Molecule-1/metabolism , Antibodies/pharmacology , Basophils/cytology , Cell Adhesion/drug effects , Cell Differentiation/drug effects , Cell Line , Epitopes/immunology , Erythropoiesis/drug effects , Fibronectins/metabolism , Flow Cytometry , Humans , Immunoprecipitation , Ligands , Microscopy, Confocal , Platelet Glycoprotein GPIIb-IIIa Complex/metabolism , Protein Transport/drug effects , Reticulocytes/cytology , Reticulocytes/drug effects , Reticulocytes/metabolism , Tetraspanin 24/metabolism
13.
Autophagy ; 8(7): 1150-1, 2012 Jul 01.
Article in English | MEDLINE | ID: mdl-22659916

ABSTRACT

The maturation of reticulocytes into functional erythrocytes is a complex process requiring extensive cytoplasmic and plasma membrane remodeling, cytoskeletal rearrangements and changes to cellular architecture. Autophagy is implicated in the sequential removal of erythroid organelles during erythropoiesis, although how this is regulated during late stages of erythroid differentiation, and the potential contribution of autophagy during reticulocyte maturation, remain unclear. Using an optimized ex vivo differentiation system for human erythropoiesis, we have observed that maturing reticulocytes are characterized by the presence of one or few large vacuolar compartments. These label strongly for glycophorin A (GYPA/GPA) which is internalized from the plasma membrane; however, they also contain organellar remnants (ER, Golgi, mitochondria) and stain strongly for LC3, suggesting that they are endocytic/autophagic hybrid structures. Interestingly, we observed the release of these vacuoles by exocytosis in maturing reticulocytes, and speculate that autophagy is needed to concentrate the final remnants of the reticulocyte endomembrane system in autophagosome/endosome hybrid compartments that are primed to undergo exocytosis.


Subject(s)
Exocytosis/physiology , Glycophorins/metabolism , Membrane Fusion/physiology , Phagosomes/physiology , Reticulocytes/physiology , Transport Vesicles/physiology , Humans
14.
Blood ; 110(13): 4518-25, 2007 Dec 15.
Article in English | MEDLINE | ID: mdl-17827389

ABSTRACT

Normal prion protein (PrP(c)), an essential substrate for development of prion disease, is widely distributed in hematopoietic cells. Recent evidence that variant Creutzfeldt-Jakob disease can be transmitted by transfusion of red cell preparations has highlighted the need for a greater understanding of the biology of PrP(c) in blood and blood-forming tissues. Here, we show that in contrast to another glycosylphosphoinositol-anchored protein CD59, PrP(c) at the cell surface of cultured human erythroblasts is rapidly internalized through the endosomal pathway, where it colocalizes with the tetraspanin CD63. In the plasma membrane, PrP(c) colocalizes with the tetraspanin CD81. Cross-linking with anti-PrP(c) or anti-CD81 causes clustering of PrP(c) and CD81, suggesting they can share the same microdomain. These data are consistent with a role for tetraspanin-enriched microdomains in trafficking of PrP(c). These results, when taken together with recent evidence that exosomes released from cells as a result of endosomal-mediated recycling to the plasma membrane contain prion infectivity, provide a pathway for the propagation of prion diseases.


Subject(s)
Endocytosis , Erythroblasts/metabolism , Prions/metabolism , Antigens, CD/metabolism , Cell Membrane/chemistry , Cells, Cultured , Endosomes/metabolism , Humans , Membrane Microdomains/chemistry , Platelet Membrane Glycoproteins/metabolism , Protein Transport , Tetraspanin 28 , Tetraspanin 30
SELECTION OF CITATIONS
SEARCH DETAIL