Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Proc Natl Acad Sci U S A ; 119(43): e2213450119, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36256818

ABSTRACT

Bacterial catabolic pathways have considerable potential as industrial biocatalysts for the valorization of lignin, a major component of plant-derived biomass. Here, we describe a pathway responsible for the catabolism of acetovanillone, a major component of several industrial lignin streams. Rhodococcus rhodochrous GD02 was previously isolated for growth on acetovanillone. A high-quality genome sequence of GD02 was generated. Transcriptomic analyses revealed a cluster of eight genes up-regulated during growth on acetovanillone and 4-hydroxyacetophenone, as well as a two-gene cluster up-regulated during growth on acetophenone. Bioinformatic analyses predicted that the hydroxyphenylethanone (Hpe) pathway proceeds via phosphorylation and carboxylation, before ß-elimination yields vanillate from acetovanillone or 4-hydroxybenzoate from 4-hydroxyacetophenone. Consistent with this prediction, the kinase, HpeHI, phosphorylated acetovanillone and 4-hydroxyacetophenone. Furthermore, HpeCBA, a biotin-dependent enzyme, catalyzed the ATP-dependent carboxylation of 4-phospho-acetovanillone but not acetovanillone. The carboxylase's specificity for 4-phospho-acetophenone (kcat/KM = 34 ± 2 mM-1 s-1) was approximately an order of magnitude higher than for 4-phospho-acetovanillone. HpeD catalyzed the efficient dephosphorylation of the carboxylated products. GD02 grew on a preparation of pine lignin produced by oxidative catalytic fractionation, depleting all of the acetovanillone, vanillin, and vanillate. Genomic and metagenomic searches indicated that the Hpe pathway occurs in a relatively small number of bacteria. This study facilitates the design of bacterial strains for biocatalytic applications by identifying a pathway for the degradation of acetovanillone.


Subject(s)
Biotin , Lignin , Lignin/metabolism , Acetophenones , Adenosine Triphosphate
2.
J Struct Biol ; 216(2): 108086, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38527711

ABSTRACT

Staphylococcus aureus, an ESKAPE pathogen, is a major clinical concern due to its pathogenicity and manifold antimicrobial resistance mechanisms. The commonly used ß-lactam antibiotics target bacterial penicillin-binding proteins (PBPs) and inhibit crosslinking of peptidoglycan strands that comprise the bacterial cell wall mesh, initiating a cascade of effects leading to bacterial cell death. S. aureus PBP1 is involved in synthesis of the bacterial cell wall during division and its presence is essential for survival of both antibiotic susceptible and resistant S. aureus strains. Here, we present X-ray crystallographic data for S. aureus PBP1 in its apo form as well as acyl-enzyme structures with distinct classes of ß-lactam antibiotics representing the penicillins, carbapenems, and cephalosporins, respectively: oxacillin, ertapenem and cephalexin. Our structural data suggest that the PBP1 active site is readily accessible for substrate, with little conformational change in key structural elements required for its covalent acylation of ß-lactam inhibitors. Stopped-flow kinetic analysis and gel-based competition assays support the structural observations, with even the weakest performing ß-lactams still having comparatively high acylation rates and affinities for PBP1. Our structural and kinetic analysis sheds insight into the ligand-PBP interactions that drive antibiotic efficacy against these historically useful antimicrobial targets and expands on current knowledge for future drug design and treatment of S. aureus infections.


Subject(s)
Penicillin-Binding Proteins , Staphylococcus aureus , Staphylococcus aureus/metabolism , Penicillin-Binding Proteins/metabolism , Penicillin-Binding Proteins/chemistry , Penicillin-Binding Proteins/genetics , Crystallography, X-Ray , Kinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , beta-Lactams/pharmacology , beta-Lactams/metabolism , beta-Lactams/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Catalytic Domain , Protein Conformation , Models, Molecular
3.
J Biol Chem ; 299(7): 104924, 2023 07.
Article in English | MEDLINE | ID: mdl-37328106

ABSTRACT

Mycobacterium tuberculosis's (Mtb) success as a pathogen is due in part to its sophisticated lipid metabolic programs, both catabolic and biosynthetic. Several of Mtb lipids have specific roles in pathogenesis, but the identity and roles of many are unknown. Here, we demonstrated that the tyz gene cluster in Mtb, previously implicated in resistance to oxidative stress and survival in macrophages, encodes the biosynthesis of acyl-oxazolones. Heterologous expression of tyzA (Rv2336), tyzB (Rv2338c) and tyzC (Rv2337c) resulted in the biosynthesis of C12:0-tyrazolone as the predominant compound, and the C12:0-tyrazolone was identified in Mtb lipid extracts. TyzA catalyzed the N-acylation of l-amino acids, with highest specificity for l-Tyr and l-Phe and lauroyl-CoA (kcat/KM = 5.9 ± 0.8 × 103 M-1s-1). In cell extracts, TyzC, a flavin-dependent oxidase (FDO) of the nitroreductase (NTR) superfamily, catalyzed the O2-dependent desaturation of the N-acyl-L-Tyr produced by TyzA, while TyzB, a ThiF homolog, catalyzed its ATP-dependent cyclization. The substrate preference of TyzB and TyzC appear to determine the identity of the acyl-oxazolone. Phylogenetic analyses revealed that the NTR superfamily includes a large number of broadly distributed FDOs, including five in Mtb that likely catalyze the desaturation of lipid species. Finally, TCA1, a molecule with activity against drug-resistant and persistent tuberculosis, failed to inhibit the cyclization activity of TyzB, the proposed secondary target of TCA1. Overall, this study identifies a novel class of Mtb lipids, clarifies the role of a potential drug target, and expands our understanding of the NTR superfamily.


Subject(s)
Lipids , Mycobacterium tuberculosis , Nitroreductases , Lipids/biosynthesis , Mycobacterium tuberculosis/enzymology , Mycobacterium tuberculosis/genetics , Phylogeny
4.
J Biol Chem ; 298(5): 101871, 2022 05.
Article in English | MEDLINE | ID: mdl-35346686

ABSTRACT

The actinobacterium Rhodococcus jostii RHA1 grows on a remarkable variety of aromatic compounds and has been studied for applications ranging from the degradation of polychlorinated biphenyls to the valorization of lignin, an underutilized component of biomass. In RHA1, the catabolism of two classes of lignin-derived compounds, alkylphenols and alkylguaiacols, involves a phylogenetically distinct extradiol dioxygenase, AphC, previously misannotated as BphC, an enzyme involved in biphenyl catabolism. To better understand the role of AphC in RHA1 catabolism, we first showed that purified AphC had highest apparent specificity for 4-propylcatechol (kcat/KM ∼106 M-1 s-1), and its apparent specificity for 4-alkylated substrates followed the trend for alkylguaiacols: propyl > ethyl > methyl > phenyl > unsubstituted. We also show AphC only poorly cleaved 3-phenylcatechol, the preferred substrate of BphC. Moreover, AphC and BphC cleaved 3-phenylcatechol and 4-phenylcatechol with different regiospecificities, likely due to the substrates' binding mode. A crystallographic structure of the AphC·4-ethylcatechol binary complex to 1.59 Å resolution revealed that the catechol is bound to the active site iron in a bidentate manner and that the substrate's alkyl side chain is accommodated by a hydrophobic pocket. Finally, we show RHA1 grows on a mixture of 4-ethylguaiacol and guaiacol, simultaneously catabolizing these substrates through meta-cleavage and ortho-cleavage pathways, respectively, suggesting that the specificity of AphC helps to prevent the routing of catechol through the Aph pathway. Overall, this study contributes to our understanding of the bacterial catabolism of aromatic compounds derived from lignin, and the determinants of specificity in extradiol dioxygenases.


Subject(s)
Dioxygenases , Rhodococcus , Catechols , Dioxygenases/metabolism , Hydrolases/metabolism , Lignin/metabolism , Oxygenases/metabolism
5.
Antimicrob Agents Chemother ; 67(1): e0129422, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36602336

ABSTRACT

Despite the deployment of combination tuberculosis (TB) chemotherapy, efforts to identify shorter, nonrelapsing treatments have resulted in limited success. Recent evidence indicates that GSK2556286 (GSK286), which acts via Rv1625c, a membrane-bound adenylyl cyclase in Mycobacterium tuberculosis, shortens treatment in rodents relative to standard of care drugs. Moreover, GSK286 can replace linezolid in the three-drug, Nix-TB regimen. Given its therapeutic potential, we sought to better understand the mechanism of action of GSK286. The compound blocked growth of M. tuberculosis in cholesterol media and increased intracellular cAMP levels ~50-fold. GSK286 did not inhibit growth of an rv1625c transposon mutant in cholesterol media and did not induce cyclic AMP (cAMP) production in this mutant, suggesting that the compound acts on this adenylyl cyclase. GSK286 also induced cAMP production in Rhodococcus jostii RHA1, a cholesterol-catabolizing actinobacterium, when Rv1625c was heterologously expressed. However, these elevated levels of cAMP did not inhibit growth of R. jostii RHA1 in cholesterol medium. Mutations in rv1625c conferred cross-resistance to GSK286 and the known Rv1625c agonist, mCLB073. Metabolic profiling of M. tuberculosis cells revealed that elevated cAMP levels, induced using either an agonist or a genetic tool, did not significantly affect pools of steroid metabolites in cholesterol-incubated cells. Finally, the inhibitory effect of agonists was not dependent on the N-acetyltransferase MtPat. Together, these data establish that GSK286 is an Rv1625c agonist and sheds light on how cAMP signaling can be manipulated as a novel antibiotic strategy to shorten TB treatments. Nevertheless, the detailed mechanism of action of these compounds remains to be elucidated.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Humans , Cyclic AMP/metabolism , Adenylyl Cyclases/genetics , Adenylyl Cyclases/metabolism , Cholesterol/metabolism
6.
Proc Natl Acad Sci U S A ; 117(41): 25771-25778, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989155

ABSTRACT

Cytochrome P450 enzymes have tremendous potential as industrial biocatalysts, including in biological lignin valorization. Here, we describe P450s that catalyze the O-demethylation of lignin-derived guaiacols with different ring substitution patterns. Bacterial strains Rhodococcus rhodochrous EP4 and Rhodococcus jostii RHA1 both utilized alkylguaiacols as sole growth substrates. Transcriptomics of EP4 grown on 4-propylguaiacol (4PG) revealed the up-regulation of agcA, encoding a CYP255A1 family P450, and the aph genes, previously shown to encode a meta-cleavage pathway responsible for 4-alkylphenol catabolism. The function of the homologous pathway in RHA1 was confirmed: Deletion mutants of agcA and aphC, encoding the meta-cleavage alkylcatechol dioxygenase, grew on guaiacol but not 4PG. By contrast, deletion mutants of gcoA and pcaL, encoding a CYP255A2 family P450 and an ortho-cleavage pathway enzyme, respectively, grew on 4-propylguaiacol but not guaiacol. CYP255A1 from EP4 catalyzed the O-demethylation of 4-alkylguaiacols to 4-alkylcatechols with the following apparent specificities (kcat/KM): propyl > ethyl > methyl > guaiacol. This order largely reflected AgcA's binding affinities for the different guaiacols and was the inverse of GcoAEP4's specificities. The biocatalytic potential of AgcA was demonstrated by the ability of EP4 to grow on lignin-derived products obtained from the reductive catalytic fractionation of corn stover, depleting alkylguaiacols and alkylphenols. By identifying related P450s with complementary specificities for lignin-relevant guaiacols, this study facilitates the design of these enzymes for biocatalytic applications. We further demonstrated that the metabolic fate of the guaiacol depends on its substitution pattern, a finding that has significant implications for engineering biocatalysts to valorize lignin.


Subject(s)
Bacterial Proteins/metabolism , Cytochrome P-450 Enzyme System/metabolism , Guaiacol/metabolism , Lignin/metabolism , Rhodococcus/enzymology , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Biocatalysis , Biodegradation, Environmental , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Guaiacol/chemistry , Kinetics , Lignin/chemistry , Rhodococcus/chemistry , Rhodococcus/genetics , Rhodococcus/metabolism , Substrate Specificity
7.
PLoS Genet ; 14(1): e1007159, 2018 01.
Article in English | MEDLINE | ID: mdl-29357354

ABSTRACT

Staphylococcus aureus requires branched-chain amino acids (BCAAs; isoleucine, leucine, valine) for protein synthesis, branched-chain fatty acid synthesis, and environmental adaptation by responding to their availability via the global transcriptional regulator CodY. The importance of BCAAs for S. aureus physiology necessitates that it either synthesize them or scavenge them from the environment. Indeed S. aureus uses specialized transporters to scavenge BCAAs, however, its ability to synthesize them has remained conflicted by reports that it is auxotrophic for leucine and valine despite carrying an intact BCAA biosynthetic operon. In revisiting these findings, we have observed that S. aureus can engage in leucine and valine synthesis, but the level of BCAA synthesis is dependent on the BCAA it is deprived of, leading us to hypothesize that each BCAA differentially regulates the biosynthetic operon. Here we show that two mechanisms of transcriptional repression regulate the level of endogenous BCAA biosynthesis in response to specific BCAA availability. We identify a trans-acting mechanism involving isoleucine-dependent repression by the global transcriptional regulator CodY and a cis-acting leucine-responsive attenuator, uncovering how S. aureus regulates endogenous biosynthesis in response to exogenous BCAA availability. Moreover, given that isoleucine can dominate CodY-dependent regulation of BCAA biosynthesis, and that CodY is a global regulator of metabolism and virulence in S. aureus, we extend the importance of isoleucine availability for CodY-dependent regulation of other metabolic and virulence genes. These data resolve the previous conflicting observations regarding BCAA biosynthesis, and reveal the environmental signals that not only induce BCAA biosynthesis, but that could also have broader consequences on S. aureus environmental adaptation and virulence via CodY.


Subject(s)
Amino Acids, Branched-Chain/biosynthesis , Bacterial Proteins/physiology , Isoleucine/physiology , Repressor Proteins/physiology , Staphylococcus aureus/metabolism , Adaptation, Biological/genetics , Down-Regulation/genetics , Environment , Gene Expression Regulation, Bacterial , Leucine/chemistry , Metabolic Networks and Pathways/genetics , Organisms, Genetically Modified , Repressor Proteins/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/pathogenicity , Virulence/genetics
8.
Biometals ; 32(3): 409-424, 2019 06.
Article in English | MEDLINE | ID: mdl-30911924

ABSTRACT

Staphylococcus aureus is a versatile opportunistic human pathogen. Infection by this bacterium requires uptake of iron from the human host, but iron is highly restricted in this environment. Staphylococcus aureus iron sufficiency is achieved primarily through uptake of heme and high-affinity iron chelators, known as siderophores. Two siderophores (staphyloferrins) are produced and secreted by S. aureus into the extracellular environment to capture iron. Staphylococcus aureus expresses specific uptake systems for staphyloferrins and more general uptake systems for siderophores produced by other microorganisms. The S. aureus heme uptake system uses highly-specific cell surface receptors to extract heme from hemoglobin and hemoglobin-haptoglobin complexes for transport into the cytoplasm where it is degraded to liberate iron. Initially thought to be independent systems, recent findings indicate that these iron uptake pathways intersect. IruO is a reductase that releases iron from heme and some ferric-siderophores. Moreover, multifunctional SbnI produces a precursor for staphyloferrin B biosynthesis, and also binds heme to regulate expression of the staphyloferrin B biosynthesis pathway. Intersection of the S. aureus iron uptake pathways is hypothesized to be important for rapid adaptation to available iron sources. Components of the heme and siderophore uptake systems are currently being targeted in the development of therapeutics against S. aureus.


Subject(s)
Heme/metabolism , Iron/metabolism , Siderophores/metabolism , Staphylococcus aureus/metabolism , Siderophores/biosynthesis , Siderophores/pharmacology , Staphylococcus aureus/drug effects
9.
Biochemistry ; 55(6): 927-39, 2016 Feb 16.
Article in English | MEDLINE | ID: mdl-26794841

ABSTRACT

Staphylococcus aureus assembles the siderophore, staphyloferrin B, from l-2,3-diaminopropionic acid (l-Dap), α-ketoglutarate, and citrate. Recently, SbnA and SbnB were shown to produce l-Dap and α-ketoglutarate from O-phospho-l-serine (OPS) and l-glutamate. SbnA is a pyridoxal 5'-phosphate (PLP)-dependent enzyme with homology to O-acetyl-l-serine sulfhydrylases; however, SbnA utilizes OPS instead of O-acetyl-l-serine (OAS), and l-glutamate serves as a nitrogen donor instead of a sulfide. In this work, we examined how SbnA dictates substrate specificity for OPS and l-glutamate using a combination of X-ray crystallography, enzyme kinetics, and site-directed mutagenesis. Analysis of SbnA crystals incubated with OPS revealed the structure of the PLP-α-aminoacrylate intermediate. Formation of the intermediate induced closure of the active site pocket by narrowing the channel leading to the active site and forming a second substrate binding pocket that likely binds l-glutamate. Three active site residues were identified: Arg132, Tyr152, Ser185 that were essential for OPS recognition and turnover. The Y152F/S185G SbnA double mutant was completely inactive, and its crystal structure revealed that the mutations induced a closed form of the enzyme in the absence of the α-aminoacrylate intermediate. Lastly, l-cysteine was shown to be a competitive inhibitor of SbnA by forming a nonproductive external aldimine with the PLP cofactor. These results suggest a regulatory link between siderophore and l-cysteine biosynthesis, revealing a potential mechanism to reduce iron uptake under oxidative stress.


Subject(s)
Citrates/biosynthesis , Ornithine/analogs & derivatives , Amino Acid Sequence , Binding Sites/physiology , Catalysis , Citrates/chemistry , Crystallography, X-Ray , Molecular Sequence Data , Ornithine/biosynthesis , Ornithine/chemistry , Ornithine/genetics , Protein Structure, Secondary , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Substrate Specificity/physiology
10.
J Biol Chem ; 290(6): 3732-9, 2015 Feb 06.
Article in English | MEDLINE | ID: mdl-25512375

ABSTRACT

Bacterioferritin is a bacterial iron storage and detoxification protein that is capable of forming a ferric oxyhydroxide mineral core within its central cavity. To do this, iron must traverse the bacterioferritin protein shell, which is expected to occur through one or more of the channels through the shell identified by structural studies. The size and negative electrostatic potential of the 24 B-type channels suggest that they could provide a route for iron into bacterioferritin. Residues at the B-type channel (Asn-34, Glu-66, Asp-132, and Asp-139) of E. coli bacterioferritin were substituted to determine if they are important for iron core formation. A significant decrease in the rates of initial oxidation of Fe(II) at the ferroxidase center and subsequent iron mineralization was observed for the D132F variant. The crystal structure of this variant shows that substitution of residue 132 with phenylalanine caused a steric blockage of the B-type channel and no other material structural perturbation. We conclude that the B-type channel is a major route for iron entry into both the ferroxidase center and the iron storage cavity of bacterioferritin.


Subject(s)
Escherichia coli Proteins/chemistry , Iron/metabolism , Metalloproteins/chemistry , Amino Acid Sequence , Binding Sites , Escherichia coli/chemistry , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Metalloproteins/genetics , Metalloproteins/metabolism , Molecular Docking Simulation , Molecular Sequence Data , Oxidation-Reduction , Point Mutation , Static Electricity
11.
Proc Natl Acad Sci U S A ; 110(18): 7240-5, 2013 Apr 30.
Article in English | MEDLINE | ID: mdl-23589841

ABSTRACT

The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


Subject(s)
Gene Expression Regulation , RNA, Transfer/chemistry , RNA, Transfer/genetics , Regulatory Sequences, Ribonucleic Acid/genetics , Base Sequence , Chromatography, Gel , Computational Biology , Cross-Linking Reagents , Crystallography, X-Ray , DNA Primers/metabolism , Gene Expression Regulation/radiation effects , Hydroxylation/radiation effects , Models, Molecular , Molecular Sequence Data , Mutagenesis/genetics , Mutagenesis/radiation effects , Nucleic Acid Conformation , Ribonuclease P/metabolism , Scattering, Small Angle , Ultraviolet Rays
12.
J Biol Chem ; 289(49): 33797-807, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-25336653

ABSTRACT

In response to iron deprivation, Staphylococcus aureus produces staphyloferrin B, a citrate-containing siderophore that delivers iron back to the cell. This bacterium also possesses a second citrate synthase, SbnG, that is necessary for supplying citrate to the staphyloferrin B biosynthetic pathway. We present the structure of SbnG bound to the inhibitor calcium and an active site variant in complex with oxaloacetate. The overall fold of SbnG is structurally distinct from TCA cycle citrate synthases yet similar to metal-dependent class II aldolases. Phylogenetic analyses revealed that SbnG forms a separate clade with homologs from other siderophore biosynthetic gene clusters and is representative of a metal-independent subgroup in the phosphoenolpyruvate/pyruvate domain superfamily. A structural superposition of the SbnG active site to TCA cycle citrate synthases and site-directed mutagenesis suggests a case for convergent evolution toward a conserved catalytic mechanism for citrate production.


Subject(s)
Bacterial Proteins/chemistry , Citrate (si)-Synthase/chemistry , Iron-Regulatory Proteins/chemistry , Iron/metabolism , Staphylococcus aureus/chemistry , Amino Acid Sequence , Bacterial Proteins/classification , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citrate (si)-Synthase/classification , Citrate (si)-Synthase/genetics , Citrate (si)-Synthase/metabolism , Citrates/biosynthesis , Citric Acid Cycle/genetics , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Evolution, Molecular , Gene Expression , Iron-Regulatory Proteins/classification , Iron-Regulatory Proteins/genetics , Iron-Regulatory Proteins/metabolism , Models, Molecular , Molecular Sequence Data , Oxaloacetic Acid/metabolism , Phosphoenolpyruvate/metabolism , Phylogeny , Protein Folding , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Pyruvic Acid/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Staphylococcus aureus/enzymology
13.
Biochim Biophys Acta ; 1839(10): 931-938, 2014 Oct.
Article in English | MEDLINE | ID: mdl-24863160

ABSTRACT

The recent discovery of short cis-acting RNA elements termed riboswitches has caused a paradigm shift in our understanding of genetic regulatory mechanisms. The three distinct superfamilies of S-adenosyl-l-methionine (SAM) riboswitches are the most commonly found riboswitch classes in nature. These RNAs represent three independent evolutionary solutions to achieve specific SAM recognition. This review summarizes research on 1) modes of gene regulatory mechanisms, 2) common themes and differences in ligand recognition, and 3) ligand-induced conformational dynamics among SAM riboswitch families. The body of work on the SAM riboswitch families constitutes a useful primer to the topic of gene regulatory RNAs as a whole. This article is part of a Special Issue entitled: Riboswitches.

14.
J Biol Chem ; 287(13): 10623-10630, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22308037

ABSTRACT

DypB from Rhodococcus jostii RHA1 is a bacterial dye-decolorizing peroxidase (DyP) that oxidizes lignin and Mn(II). Three residues interact with the iron-bound solvent species in ferric DypB: Asn-246 and the conserved Asp-153 and Arg-244. Substitution of either Asp-153 or Asn-246 with alanine minimally affected the second order rate constant for Compound I formation (k(1) ∼ 10(5) M(-1)s(-1)) and the specificity constant (k(cat)/K(m)) for H(2)O(2). Even in the D153A/N246A double variant, these values were reduced less than 30-fold. However, these substitutions dramatically reduced the stability of Compound I (t(1/2) ∼ 0.13 s) as compared with the wild-type enzyme (540 s). By contrast, substitution of Arg-244 with leucine abolished the peroxidase activity, and heme iron of the variant showed a pH-dependent transition from high spin (pH 5) to low spin (pH 8.5). Two variants were designed to mimic the plant peroxidase active site: D153H, which was more than an order of magnitude less reactive with H(2)O(2), and N246H, which had no detectable peroxidase activity. X-ray crystallographic studies revealed that structural changes in the variants are confined to the distal heme environment. The data establish an essential role for Arg-244 in Compound I formation in DypB, possibly through charge stabilization and proton transfer. The principle roles of Asp-153 and Asn-246 appear to be in modulating the subsequent reactivity of Compound I. These results expand the range of residues known to catalyze Compound I formation in heme peroxidases.


Subject(s)
Bacterial Proteins/chemistry , Heme/chemistry , Peroxidase/chemistry , Rhodococcus/enzymology , Amino Acid Substitution , Bacterial Proteins/genetics , Binding Sites , Catalysis , Hydrogen-Ion Concentration , Mutation, Missense , Peroxidase/genetics , Rhodococcus/genetics
15.
RNA Biol ; 10(12): 1761-4, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24356646

ABSTRACT

The term riboswitch usually refers to small molecule sensing regulatory modules in the 5' untranslated regions of a mRNA. They are typically comprised of separate ligand binding and regulatory domains. The T box riboswitch is unique from other identified riboswitches because its effector is an essential macromolecule, tRNA. It senses the aminoacylation state of tRNA to regulate genes involved in a variety of functions relating to amino acid metabolism and tRNA aminoacylation. T box riboswitches performs an intuitively simple process using a complex structured RNA element and, until recently, the underlying mechanisms were poorly understood. Only two sequence-specific contacts had been previously identified: (1) between the specifier sequence (codon) and the tRNA anticodon and (2) between an anti-terminator stem loop and the tRNA acceptor arm CCA tail. tRNA aminoacylation blocks the latter interaction and therefore serves as the switch between termination and anti-termination. Outside of these two contacts, the structure and functions of T box riboswitches have come to light in some recent studies. We recently described the X-ray crystal structure of the highly conserved T box riboswitch distal Stem I region and demonstrated that this region interacts with the tRNA elbow to anchor it to the riboswitch. Independently, Lehmann et al. used sequence homology search to arrive at a similar model for Stem I-tRNA interactions. The model was further supported by two recent structures of the Stem I-tRNA complex, determined independently by our group and by Zhang and Ferré-D'Amaré. This article highlights some of these contributions to synthesize an updated model for tRNA recognition by the T box riboswitch.


Subject(s)
RNA, Transfer/chemistry , RNA, Transfer/metabolism , Riboswitch , Binding Sites , Models, Molecular , Nucleic Acid Conformation , RNA, Transfer/genetics
16.
Biochemistry ; 50(24): 5443-52, 2011 Jun 21.
Article in English | MEDLINE | ID: mdl-21574663

ABSTRACT

Iron is an essential requirement for life for nearly all organisms. The human pathogen Staphylococcus aureus is able to acquire iron from the heme cofactor of hemoglobin (Hb) released from lysed erythrocytes. IsdB, the predominant Hb receptor of S. aureus, is a cell wall-anchored protein that is composed of two NEAT domains. The N-terminal NEAT domain (IsdB-N1) binds Hb, and the C-terminal NEAT domain (IsdB-N2) relays heme to IsdA for transport into the cell. Here we present the 1.45 Å resolution X-ray crystal structure of the IsdB-N2-heme complex. While the structure largely conforms to the eight-strand ß-sandwich fold seen in other NEAT domains such as IsdA-N and uses a conserved Tyr residue to coordinate heme-iron, a Met residue is also involved in iron coordination, resulting in a novel Tyr-Met hexacoordinate heme-iron state. The kinetics of the transfer of heme from IsdB-N2 to IsdA-N can be modeled as a two-step process. The rate of transfer of heme between the isolated NEAT domains (82 s(-1)) was found to be similar to that measured for the full-length proteins. Replacing the iron coordinating Met with Leu did not abrogate high-affinity heme binding but did reduce the heme transfer rate constant by more than half. This unusual Met-Tyr heme coordination may also bestow properties on IsdB that help it to bind heme in different oxidation states or extract heme from hemoglobin.


Subject(s)
Bacterial Proteins/chemistry , Cation Transport Proteins/chemistry , Amino Acid Substitution , Apoproteins/chemistry , Apoproteins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Crystallography, X-Ray , Heme/chemistry , Hemoglobins/chemistry , Hemoglobins/metabolism , Humans , Iron/chemistry , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Myoglobin/chemistry , Myoglobin/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry , Staphylococcus aureus/chemistry , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism
17.
Biochemistry ; 50(23): 5108-19, 2011 Jun 14.
Article in English | MEDLINE | ID: mdl-21534572

ABSTRACT

The soil bacterium Rhodococcus jostii RHA1 contains two dye-decolorizing peroxidases (DyPs) named according to the subfamily they represent: DypA, predicted to be periplasmic, and DypB, implicated in lignin degradation. Steady-state kinetic studies of these enzymes revealed that they have much lower peroxidase activities than C- and D-type DyPs. Nevertheless, DypA showed 6-fold greater apparent specificity for the anthraquinone dye Reactive Blue 4 (k(cat)/K(m) = 12800 ± 600 M(-1) s(-1)) than either ABTS or pyrogallol, consistent with previously characterized DyPs. By contrast, DypB showed the greatest apparent specificity for ABTS (k(cat)/K(m) = 2000 ± 100 M(-1) s(-1)) and also oxidized Mn(II) (k(cat)/K(m) = 25.1 ± 0.1 M(-1) s(-1)). Further differences were detected using electron paramagnetic resonance (EPR) spectroscopy: while both DyPs contained high-spin (S = (5)/(2)) Fe(III) in the resting state, DypA had a rhombic high-spin signal (g(y) = 6.32, g(x) = 5.45, and g(z) = 1.97) while DypB had a predominantly axial signal (g(y) = 6.09, g(x) = 5.45, and g(z) = 1.99). Moreover, DypA reacted with H(2)O(2) to generate an intermediate with features of compound II (Fe(IV)═O). By contrast, DypB reacted with H(2)O(2) with a second-order rate constant of (1.79 ± 0.06) × 10(5) M(-1) s(-1) to generate a relatively stable green-colored intermediate (t(1/2) ∼ 9 min). While the electron absorption spectrum of this intermediate was similar to that of compound I of plant-type peroxidases, its EPR spectrum was more consistent with a poorly coupled protein-based radical than with an [Fe(IV)═O Por(•)](+) species. The X-ray crystal structure of DypB, determined to 1.4 Å resolution, revealed a hexacoordinated heme iron with histidine and a solvent species occupying axial positions. A solvent channel potentially provides access to the distal face of the heme for H(2)O(2). A shallow pocket exposes heme propionates to the solvent and contains a cluster of acidic residues that potentially bind Mn(II). Insight into the structure and function of DypB facilitates its engineering for the improved degradation of lignocellulose.


Subject(s)
Peroxidases/chemistry , Rhodococcus/enzymology , Anthraquinones/chemistry , Anthraquinones/metabolism , Coloring Agents/chemistry , Coloring Agents/metabolism , Electron Spin Resonance Spectroscopy , Kinetics , Oxidation-Reduction , Peroxidases/metabolism , Rhodococcus/metabolism , Spectrophotometry, Ultraviolet
18.
J Biol Chem ; 285(45): 34579-88, 2010 Nov 05.
Article in English | MEDLINE | ID: mdl-20810662

ABSTRACT

Many organisms use sophisticated systems to acquire growth-limiting iron. Iron limitation is especially apparent in bacterial pathogens of mammalian hosts where free iron concentrations are physiologically negligible. A common strategy is to secrete low molecular weight iron chelators, termed siderophores, and express high affinity receptors for the siderophore-iron complex. Staphylococcus aureus, a widespread pathogen, produces two siderophores, staphyloferrin A (SA) and staphyloferrin B (SB). We have determined the crystal structure of the staphyloferrin B receptor, SirA, at high resolution in both the apo and Fe(III)-SB (FeSB)-bound forms. SirA, a member of the class III binding protein family of metal receptors, has N- and C-terminal domains, each composed of mainly a ß-stranded core and α-helical periphery. The domains are bridged by a single α-helix and together form the FeSB binding site. SB coordinates Fe(III) through five oxygen atoms and one nitrogen atom in distorted octahedral geometry. SirA undergoes conformational change upon siderophore binding, largely securing two loops from the C-terminal domain to enclose FeSB with a low nanomolar dissociation constant. The staphyloferrin A receptor, HtsA, homologous to SirA, also encloses its cognate siderophore (FeSA); however, the largest conformational rearrangements involve a different region of the C-terminal domain. FeSB is uniquely situated in the binding pocket of SirA with few of the contacting residues being conserved with those of HtsA interacting with FeSA. Although both SirA and HtsA bind siderophores from the same α-hydroxycarboxylate class, the unique structural features of each receptor provides an explanation for their distinct specificity.


Subject(s)
Bacterial Proteins/chemistry , Binding Sites , Citrates/chemistry , Staphylococcus aureus/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Citrates/metabolism , Crystallography, X-Ray , Protein Structure, Secondary , Protein Structure, Tertiary , Staphylococcus aureus/genetics , Staphylococcus aureus/metabolism , Structure-Activity Relationship
19.
J Biol Chem ; 285(15): 11162-71, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20147287

ABSTRACT

Staphylococcus aureus uses several efficient iron acquisition strategies to overcome iron limitation. Recently, the genetic locus encoding biosynthetic enzymes for the iron chelating molecule, staphyloferrin A (SA), was determined. S. aureus synthesizes and secretes SA into its environment to scavenge iron. The membrane-anchored ATP binding cassette-binding protein, HtsA, receives the ferric-chelate for import into the cell. Recently, we determined the apoHtsA crystal structure, the first siderophore receptor from gram-positive bacteria to be structurally characterized. Herein we present the x-ray crystal structure of the HtsA-ferric-SA complex. HtsA adopts a class III binding protein fold composed of separate N- and C-terminal domains bridged by a single alpha-helix. Recombinant HtsA can efficiently sequester ferric-SA from S. aureus culture supernatants where it is bound within the pocket formed between distinct N- and C-terminal domains. A basic patch composed mainly of six Arg residues contact the negatively charged siderophore, securing it within the pocket. The x-ray crystal structures from two different ligand-bound crystal forms were determined. The structures represent the first structural characterization of an endogenous alpha-hydroxycarboxylate-type siderophore-receptor complex. One structure is in an open form similar to apoHtsA, whereas the other is in a more closed conformation. The conformational change is highlighted by isolated movement of three loops within the C-terminal domain, a domain movement unique to known class III binding protein structures.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , Arginine/chemistry , Bacterial Outer Membrane Proteins/metabolism , Citrates/chemistry , Ornithine/analogs & derivatives , Receptors, Cell Surface/metabolism , Staphylococcus aureus/metabolism , ATP-Binding Cassette Transporters/metabolism , Amino Acid Sequence , Citrates/metabolism , Crystallography, X-Ray/methods , Ligands , Models, Biological , Mutation , Ornithine/chemistry , Ornithine/metabolism , Protein Binding , Protein Conformation , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Sequence Homology, Amino Acid
20.
Methods Mol Biol ; 2323: 39-47, 2021.
Article in English | MEDLINE | ID: mdl-34086272

ABSTRACT

Recent studies have solidified RNA's regulatory and catalytic roles in all life forms. Understanding such functions necessarily requires high-resolution understanding of the molecular structure of RNA. Whereas proteins tend to fold into a globular structure and gain most of the folding energy from tertiary interactions, RNAs behave the opposite. Their tertiary structure tends to be irregular and porous, and they gain the majority of their folding free energy from secondary structure formation. These properties lead to higher conformational dynamics in RNA structure. As a result, structure determination proves more difficult for RNA using X-ray crystallography and other structural biology tools. Despite the painstaking effort to obtain large quantities of chemically pure RNA molecules, many still fail to crystallize due to the presence of conformational impurity. To overcome the challenge, we developed a new method to crystallize the RNA of interest as a tRNA chimera. In most cases, tRNA fusion significantly increased the conformational purity of our RNA target, improved the success rate of obtaining RNA crystals, and made the subsequent structure determination process much easier. Here in this chapter we describe our protocol to design, stabilize, express, and purify an RNA target as a tRNA chimera. While this method continues a series of work utilizing well-behaving macromolecules/motifs as "crystallization tags" (Ke and Wolberger. Protein Sci 12:306-312, 2003; Ferre-D'Amare and Doudna. J Mol Biol 295:541-556, 2000; Koldobskaya et al . Nat Struct Mol Biol 18:100-106, 2011; Ferre-D'Amare et al. J Mol Biol 279:621-631, 1998), it was inspired by the work of Ponchon and Dardel to utilize tRNA scaffold to express, stabilize, and purify RNA of interest in vivo (Ponchon and Dardel. Nat Methods 4:571-576, 2007). The "tRNA scaffold," where the target RNA is inserted into a normal tRNA, replacing the anticodon sequence, can effectively help the RNA fold, express in various sources and even assist crystallization and phase determination. This approach applies to any generic RNA whose 5' and 3' ends join and form a helix.


Subject(s)
Nucleic Acid Conformation , RNA, Transfer/chemistry , Crystallization , Escherichia coli , Models, Molecular , Plasmids/genetics , Polymerase Chain Reaction/methods , RNA/biosynthesis , RNA/chemistry , RNA Stability , RNA, Transfer/isolation & purification , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL