Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Article in English | MEDLINE | ID: mdl-33658378

ABSTRACT

Genetically modified animals continue to provide important insights into the molecular basis of health and disease. Research has focused mostly on genetically modified mice, although other species like pigs resemble the human physiology more closely. In addition, cross-species comparisons with phylogenetically distant species such as chickens provide powerful insights into fundamental biological and biomedical processes. One of the most versatile genetic methods applicable across species is CRISPR-Cas9. Here, we report the generation of transgenic chickens and pigs that constitutively express Cas9 in all organs. These animals are healthy and fertile. Functionality of Cas9 was confirmed in both species for a number of different target genes, for a variety of cell types and in vivo by targeted gene disruption in lymphocytes and the developing brain, and by precise excision of a 12.7-kb DNA fragment in the heart. The Cas9 transgenic animals will provide a powerful resource for in vivo genome editing for both agricultural and translational biomedical research, and will facilitate reverse genetics as well as cross-species comparisons.


Subject(s)
Animals, Genetically Modified/genetics , CRISPR-Cas Systems , Chickens/genetics , Gene Editing , Livestock/genetics , Swine/genetics , Animals
2.
J Crohns Colitis ; 17(7): 1128-1138, 2023 Jul 05.
Article in English | MEDLINE | ID: mdl-36821422

ABSTRACT

BACKGROUND AND AIMS: Crohn's disease [CD] is a major subtype of inflammatory bowel diseases [IBD] with increasing incidence and prevalence. Results of studies using available small and large animal models are often poorly translatable to patients, and few CD models show small intestinal pathology. Due to its similarities to humans, the pig has emerged as a highly suitable translational disease model, particularly for testing novel nutritional and technological interventions. Our goal was to develop a physiologically relevant porcine CD model to facilitate translation of findings and interventions towards the clinic. METHODS: We generated pigs bearing a 93-bp deletion of the adenosine-uracil-rich element [ARE] and a constitutive-decay element within the 3' untranslated region of the TNF gene. Comparative analysis of physiological, molecular, histological and microbial characteristics was performed between wild-type, TNFΔARE/+ and TNFΔARE/ΔARE animals. Alterations in the microbiome were compared to the TNFΔARE mouse model and IBD patients. RESULTS: TNF ΔARE pigs recapitulate major characteristics of human CD, including ulcerative transmural ileocolitis, increased abundance of proinflammatory cytokines, immune cell infiltration and dysbiotic microbial communities. 16S rRNA gene amplicon sequencing revealed enrichment in members belonging to Megasphaera, Campylobacter, Desulfovibrio, Alistipes and Lachnoclostridum in faecal or mucosa-associated bacteria compared to wild-type littermates. Principal components analysis clustering with a subset of TNFΔARE/+ mice and human IBD patients suggests microbial similarity based on disease severity. CONCLUSIONS: We demonstrate that the TNFΔARE pig resembles a CD-like ileocolitis pathophenotype recapitulating human disease. The ability to conduct long-term studies and test novel surgical procedures and dietary interventions in a physiologically relevant model will benefit future translational IBD research studies.


Subject(s)
Crohn Disease , Ileitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Swine , RNA, Ribosomal, 16S/genetics , Tumor Necrosis Factor-alpha/genetics , Ileitis/etiology , Inflammatory Bowel Diseases/complications
3.
mBio ; 14(3): e0347822, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37154747

ABSTRACT

Apobec3A is involved in the antiviral host defense, targeting nuclear DNA, introducing point mutations, and thereby activating DNA damage response (DDR). Here, we found a significant upregulation of Apobec3A during HAdV infection, including Apobec3A protein stabilization mediated by the viral proteins E1B-55K and E4orf6, which subsequently limited HAdV replication and most likely involved a deaminase-dependent mechanism. The transient silencing of Apobec3A enhanced adenoviral replication. HAdV triggered Apobec3A dimer formation and enhanced activity to repress the virus. Apobec3A decreased E2A SUMOylation and interfered with viral replication centers. A comparative sequence analysis revealed that HAdV types A, C, and F may have evolved a strategy to escape Apobec3A-mediated deamination via reduced frequencies of TC dinucleotides within the viral genome. Although viral components induce major changes within infected cells to support lytic life cycles, our findings demonstrate that host Apobec3A-mediated restriction limits virus replication, albeit that HAdV may have evolved to escape this restriction. This allows for novel insights into the HAdV/host-cell interplay, which broaden the current view of how a host cell can limit HAdV infection. IMPORTANCE Our data provide a novel conceptual insight into the virus/host-cell interplay, changing the current view of how a host-cell can defeat a virus infection. Thus, our study reveals a novel and general impact of cellular Apobec3A on the intervention of human adenovirus (HAdV) gene expression and replication by improving the host antiviral defense mechanisms, thereby providing a novel basis for innovative antiviral strategies in future therapeutic settings. Ongoing investigations of the cellular pathways that are modulated by HAdV are of great interest, particularly since adenovirus-based vectors actually serve as COVID vaccine vectors and also frequently serve as tools in human gene therapy and oncolytic treatment options. HAdV constitute an ideal model system by which to analyze the transforming capabilities of DNA tumor viruses as well as the underlying molecular principles of virus-induced and cellular tumorigenesis.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , COVID-19 , Humans , Adenoviruses, Human/physiology , Adenoviridae/genetics , Virus Replication , COVID-19 Vaccines , Deamination , Antiviral Agents/metabolism , Gene Expression
SELECTION OF CITATIONS
SEARCH DETAIL