Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nano Lett ; 19(10): 7287-7292, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31525062

ABSTRACT

The ability to tailor waveguide cavities and couple them with quantum emitters has developed a realm of nanophotonics encompassing, for example, highly efficient single photon generation or the control of giant photon nonlinearities. Opening new grounds by pushing the interaction of the waveguide cavity and integrated emitters further into the deep subwavelength regime, however, has been complicated by nonradiative losses due to the increasing importance of surface defects when decreasing cavity dimensions. Here, we show efficient suppression of nonradiative recombination for thin waveguide cavities using core-shell semiconductor nanowires. We experimentally reveal the advantages of such nanowires, which host mobile emitters, that is, free excitons, in a one-dimensional (1D) waveguide, highlighting the resulting potential for tunable, active, nanophotonic devices. In our experiment, controlling the nanowire waveguide diameter tunes the luminescence lifetime of excitons in the nanowires across 2 orders of magnitude up to 80 ns. At the smallest wire diameters, we show that this luminescence lifetime can be manipulated by engineering the dielectric environment of the nanowires. Exploiting this unique handle on the spontaneous emission of mobile emitters, we demonstrate an all-dielectric spatial control of the mobile emitters along the axis of the 1D nanowire waveguide.

2.
Opt Express ; 26(15): 19059-19066, 2018 Jul 23.
Article in English | MEDLINE | ID: mdl-30114166

ABSTRACT

We demonstrate ultrabroadband electro-optic detection of multi-THz transients using mechanically exfoliated flakes of gallium selenide of a thickness of less than 10 µm, contacted to a diamond substrate by van-der-Waals bonding. While the low crystal thickness allows for extremely broadband phase matching, the excellent optical contact with the index-matched substrate suppresses multiple optical reflections. The high quality of our structure makes our scheme suitable for the undistorted and artifact-free observation of electromagnetic waveforms covering the entire THz spectral range up to the near-infrared regime without the need for correction for the electro-optic response function. With the current revolution of chemically inert quasi-two-dimensional layered materials, we anticipate that exfoliated van-der-Waals materials on index-matched substrates will open new flexible ways of ultrabroadband electro-optic detection at unprecedented frequencies.

3.
Nano Lett ; 17(12): 7914-7919, 2017 12 13.
Article in English | MEDLINE | ID: mdl-29182344

ABSTRACT

Gold nanoparticles emit broad-band upconverted luminescence upon irradiation with pulsed infrared laser radiation. Although the phenomenon is widely observed, considerable disagreement still exists concerning the underlying physics, most notably over the applicability of concepts such as multiphoton absorption, inelastic scattering, and interband vs intraband electronic transitions. Here, we study single particles and small clusters of particles by employing a spectrally resolved power-law analysis of the irradiation-dependent emission as a sensitive probe of these physical models. Two regimes of emission are identified. At low irradiance levels of kW/cm2, the emission follows a well-defined integer-exponent power law suggestive of a multiphoton process. However, at higher irradiance levels of several kW/cm2, the nonlinearity exponent itself depends on the photon energy detected, a tell-tale signature of a radiating heated electron gas. We show that in this regime, the experiments are incompatible with both interband transitions and inelastic light scattering as the cause of the luminescence, whereas they are compatible with the notion of luminescence linked to intraband transitions.

SELECTION OF CITATIONS
SEARCH DETAIL