Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Nature ; 621(7980): 821-829, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37586410

ABSTRACT

Endothelial cells line the blood and lymphatic vasculature, and act as an essential physical barrier, control nutrient transport, facilitate tissue immunosurveillance and coordinate angiogenesis and lymphangiogenesis1,2. In the intestine, dietary and microbial cues are particularly important in the regulation of organ homeostasis. However, whether enteric endothelial cells actively sense and integrate such signals is currently unknown. Here we show that the aryl hydrocarbon receptor (AHR) acts as a critical node for endothelial cell sensing of dietary metabolites in adult mice and human primary endothelial cells. We first established a comprehensive single-cell endothelial atlas of the mouse small intestine, uncovering the cellular complexity and functional heterogeneity of blood and lymphatic endothelial cells. Analyses of AHR-mediated responses at single-cell resolution identified tissue-protective transcriptional signatures and regulatory networks promoting cellular quiescence and vascular normalcy at steady state. Endothelial AHR deficiency in adult mice resulted in dysregulated inflammatory responses and the initiation of proliferative pathways. Furthermore, endothelial sensing of dietary AHR ligands was required for optimal protection against enteric infection. In human endothelial cells, AHR signalling promoted quiescence and restrained activation by inflammatory mediators. Together, our data provide a comprehensive dissection of the effect of environmental sensing across the spectrum of enteric endothelia, demonstrating that endothelial AHR signalling integrates dietary cues to maintain tissue homeostasis by promoting endothelial cell quiescence and vascular normalcy.


Subject(s)
Endothelial Cells , Receptors, Aryl Hydrocarbon , Humans , Animals , Mice , Receptors, Aryl Hydrocarbon/metabolism , Endothelial Cells/metabolism , Intestines , Signal Transduction , Homeostasis , Ligands
2.
Adv Exp Med Biol ; 1243: 101-111, 2020.
Article in English | MEDLINE | ID: mdl-32297214

ABSTRACT

Tumors are stressful environments. As tumors evolve from single mutated cancer cells into invasive malignancies they must overcome various constraints and barriers imposed by a hostile microenvironment. To achieve this, cancer cells recruit and rewire cells in their microenvironment to become pro-tumorigenic. We propose that chaperones are vital players in this process, and that activation of stress responses helps tumors adapt and evolve into aggressive malignancies, by enabling phenotypic plasticity in the tumor microenvironment (TME). In this chapter we will review evidence supporting non-cancer-cell-autonomous activity of chaperones in human patients and mouse models of cancer, discuss the mechanisms by which this non-cell-autonomous activity is mediated and provide an evolutionary perspective on the basis of this phenomenon.


Subject(s)
Heat Shock Transcription Factors/metabolism , Molecular Chaperones/metabolism , Neoplasms/metabolism , Tumor Microenvironment , Animals , Carcinogenesis , Humans , Neoplasms/genetics , Tumor Microenvironment/genetics
3.
Cancer Res ; 81(7): 1639-1653, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33547159

ABSTRACT

Gastric cancer is the third most lethal cancer worldwide, and evaluation of the genomic status of gastric cancer cells has not translated into effective prognostic or therapeutic strategies. We therefore hypothesize that outcomes may depend on the tumor microenvironment (TME), in particular, cancer-associated fibroblasts (CAF). However, very little is known about the role of CAFs in gastric cancer. To address this, we mapped the transcriptional landscape of human gastric cancer stroma by microdissection and RNA sequencing of CAFs from patients with gastric cancer. A stromal gene signature was associated with poor disease outcome, and the transcription factor heat shock factor 1 (HSF1) regulated the signature. HSF1 upregulated inhibin subunit beta A and thrombospondin 2, which were secreted in CAF-derived extracellular vesicles to the TME to promote cancer. Together, our work provides the first transcriptional map of human gastric cancer stroma and highlights HSF1 and its transcriptional targets as potential diagnostic and therapeutic targets in the genomically stable tumor microenvironment. SIGNIFICANCE: This study shows how HSF1 regulates a stromal transcriptional program associated with aggressive gastric cancer and identifies multiple proteins within this program as candidates for therapeutic intervention. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/7/1639/F1.large.jpg.


Subject(s)
Cancer-Associated Fibroblasts/physiology , Extracellular Vesicles/metabolism , Heat Shock Transcription Factors/metabolism , Stomach Neoplasms/pathology , Animals , Cancer-Associated Fibroblasts/pathology , Cells, Cultured , Cohort Studies , Disease Progression , Extracellular Vesicles/pathology , Heat Shock Transcription Factors/genetics , Humans , Mice , Mice, 129 Strain , Mice, Inbred BALB C , Mice, Transgenic , Neoplasm Invasiveness , Phenotype , Prognosis , Secretory Pathway/physiology , Stomach Neoplasms/diagnosis , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Survival Analysis , Tumor Microenvironment/physiology
SELECTION OF CITATIONS
SEARCH DETAIL