Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Anal Bioanal Chem ; 407(7): 1813-7, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25577365

ABSTRACT

An important issue, in times of climate change and more extreme weather events, is the investigation of forest ecosystem reactions to these events. Longer drought periods stress the vitality of trees and promote mass insect outbreaks, which strongly affect ecosystem processes and services. Cavity-enhanced Raman gas spectrometry was applied for online multi-gas analysis of the gas exchange rates of O2 and CO2 and the labeling of Fagus sylvatica L. (European beech) seedlings with (13)CO2. The rapid monitoring of all these gases simultaneously allowed for the separation of photosynthetic uptake of CO2 by the beech seedlings and a constant (12)CO2 efflux via respiration and thus for a correction of the measured (12)CO2 concentrations in course of the labeling experiment. The effects of aphid infestation with the woolly beech aphid (Phyllaphis fagi L.) as well as the effect of a drought period on the respirational gas exchange were investigated. A slightly decreased respirational activity of drought-stressed seedlings in comparison to normally watered seedlings was found already for a low drought intensity. Cavity-enhanced Raman gas monitoring of O2, (12)CO2, and (13)CO2 was proven to be a powerful new tool for studying the effect of drought stress and aphid infestation on the respirational activity of European beech seedlings as an example of important forest species in Central Europe.


Subject(s)
Carbon Isotopes/analysis , Fagus/metabolism , Plant Leaves/metabolism , Spectrum Analysis, Raman/methods
2.
Environ Sci Technol ; 48(13): 7229-36, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24912044

ABSTRACT

Soil organic matter (SOM) is involved in many important soil processes such as carbon sequestration and the solubility of plant nutrients and metals. Ultrahigh resolution mass spectrometry was used to determine the influence of forest vegetation type and soil depth on the molecular composition of the water-extractable organic matter (WEOM) fraction. Contrasting the upper 0-5 cm with the 25-50 cm B horizon depth increment, the relative abundance of lipids and carbohydrates significantly increased, whereas condensed aromatics and tannins significantly decreased for the deciduous stand WEOM. No significant abundance changes were found for the coniferous stand DOM. Kendrick mass defect analysis showed that the WEOM of the 25-50 cm B horizon was depleted in oxygen-rich and higher mass components as compared to the 0-5 cm B horizon WEOM, suggesting that higher mass WEOM components with oxygen-containing functionality show greater reactivity in abiotic and/or biotic reactions. Furthermore, using an inoculated 14-day laboratory incubation study and multivariate ordination methods, we identified the WEOM components with H:C > 1.2 and O:C > 0.5 as being correlated most strongly with biodegradability. Our findings highlight the importance of understanding soil depth differences for various forest types in the chemical composition of SOM and the processes governing SOM production and transformations to fully understand the ecological implications of changes in forest composition and function in a changing climate.


Subject(s)
Organic Chemicals/analysis , Soil/chemistry , Trees/chemistry , Biodegradation, Environmental , Carbon/analysis , Cyclotrons , Fourier Analysis , Hydrogen-Ion Concentration , Mass Spectrometry , Molecular Weight , New England , Nitrogen/analysis , Ozone/chemistry , Solubility , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL