Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Molecules ; 24(10)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137813

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a major inflammatory lung disease characterized by irreversible and progressive airflow obstruction. Although corticosteroids are often used to reduce inflammation, steroid therapies are insufficient in patients with refractory COPD. Both serum amyloid A (SAA) and IL-33 have been implicated in the pathology of steroid-resistant lung inflammation. Picroside II isolated from Pseudolysimachion rotundum var. subintegrum (Plantaginaceae) is a major bioactive component of YPL-001, which has completed phase-2a clinical trials in chronic obstructive pulmonary disease patients. In this study, we investigated whether picroside II is effective in treating steroid refractory lung inflammation via the inhibition of the SAA-IL-33 axis. Picroside II inhibited LPS-induced SAA1 expression in human monocytes, which are resistant to steroids. SAA induced the secretion of IL-33 without involving cell necrosis. Picroside II, but not dexamethasone effectively inhibited SAA-induced IL-33 expression and secretion. The inhibitory effect by picroside II was mediated by suppressing the mitogen-activated protein kinase (MAPK) p38, ERK1/2, and nuclear factor-κB pathways. Our results suggest that picroside II negatively modulates the SAA-IL-33 axis that has been implicated in steroid-resistant lung inflammation. These findings provide valuable information for the development of picroside II as an alternative therapeutic agent against steroid refractory lung inflammation in COPD.


Subject(s)
Cinnamates/isolation & purification , Cinnamates/pharmacology , Glucocorticoids/pharmacology , Interleukin-33/metabolism , Iridoid Glucosides/isolation & purification , Iridoid Glucosides/pharmacology , Plantaginaceae/chemistry , Serum Amyloid A Protein/metabolism , Cinnamates/chemistry , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Iridoid Glucosides/chemistry , Lipopolysaccharides/pharmacology , Lung/cytology , MAP Kinase Signaling System/drug effects , Monocytes/drug effects , Monocytes/metabolism , NF-kappa B/metabolism , THP-1 Cells , Toll-Like Receptor 2/metabolism , Toll-Like Receptor 4/metabolism , Transcription, Genetic/drug effects
2.
Biochem Biophys Res Commun ; 415(3): 472-8, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-22056560

ABSTRACT

Osterix (Osx) is a novel zinc finger-containing transcription factor that is essential for osteoblast differentiation and bone formation in bone homeostasis. The mitogen-activated protein (MAP) kinases are a group of evolutionarily conserved proline-directed protein serine/threonine kinases that are activated in response to a variety of extracellular stimuli and mediate signal transduction from the cell surface to the nucleus. Erk1/2 plays essential roles in osteoblast differentiation and in supporting osteoclastogenesis, but the precise molecular signaling mechanisms between Osterix and Erk1/2 are not known. We therefore focused on the relationship between Osterix and Erk1/2 during osteoblast differentiation because BMP signaling induces Erk activation in osteoblasts. We investigated the role of the MAPK pathway in regulating protein levels and transcriptional functions of Osterix. We found that Erk activation by overexpression of constitutively active MEK increased the mRNA and protein levels of Osterix and enhanced the transcriptional activity of Osterix, whereas U0126, an inhibitor of MEK, suppressed the protein levels of Osterix and the transcriptional activity. Also, overexpression of constitutively active MEK stabilized Osterix protein. These results suggest that Erk1/2 regulates a major transcription factor, Osterix, during osteoblast differentiation by increasing its protein stability and transcriptional activity.


Subject(s)
Cell Differentiation , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Osteoblasts/cytology , Osteogenesis/genetics , Transcription Factors/metabolism , Animals , Bone Morphogenetic Protein 2/pharmacology , Butadienes/pharmacology , Enzyme Inhibitors/pharmacology , HEK293 Cells , Humans , Mice , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Nitriles/pharmacology , Osteoblasts/metabolism , Osteogenesis/drug effects , Protein Stability , Sp7 Transcription Factor , Transcription Factors/genetics , Transcription, Genetic
3.
Sci Rep ; 9(1): 11607, 2019 09 02.
Article in English | MEDLINE | ID: mdl-31474761

ABSTRACT

Carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) plays an important role in lung cancer progression. Here, we examined the therapeutic efficacy of CEACAM6 gene silencing using an siRNA delivery platform targeting the acidic tumour microenvironment in a lung adenocarcinoma xenograft mouse model. An siRNA delivery vector was constructed by tethering the peptide nucleic acid form of an siRNA targeting CEACAM6 (siCEACAM6) to a peptide with a low pH-induced transmembrane structure (pHLIP) to transport siRNAs across the plasma membrane. Specific binding of the pHLIP-siCEACAM6 conjugate to A549 lung adenocarcinoma cells at low pH was demonstrated by flow cytometry. A549 cells incubated with pHLIP-siCEACAM6 at an acidic pH showed downregulated expression of endogenous CEACAM6 protein and reduced cell viability. The in vivo tumour-suppressing effects of pHLIP-siCEACAM6 in lung adenocarcinoma were assessed in a xenograft model generated by injecting BALB/c nude mice with A549 cells. pHLIP-siCEACAM6 treatment alone resulted in tumour growth inhibition of up to 35.5%. When combined with cisplatin treatment, pHLIP-siCEACAM6 markedly enhanced tumour growth inhibition by up to 47%. In conclusion, the delivery of siCEACAM6 to lung adenocarcinoma using the pHLIP peptide has therapeutic potential as a unique cancer treatment approach.


Subject(s)
Adenocarcinoma of Lung/genetics , Antigens, CD/genetics , Cell Adhesion Molecules/genetics , Gene Transfer Techniques , RNA, Small Interfering/pharmacology , A549 Cells , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/therapy , Animals , Cell Adhesion Molecules/antagonists & inhibitors , Cell Proliferation/genetics , GPI-Linked Proteins/antagonists & inhibitors , GPI-Linked Proteins/genetics , Gene Silencing , Heterografts , Humans , Mice , RNA, Small Interfering/genetics , Tumor Microenvironment/genetics
4.
FEBS Lett ; 580(1): 305-10, 2006 Jan 09.
Article in English | MEDLINE | ID: mdl-16376338

ABSTRACT

Recognition of phosphorylated serine/threonine-containing motifs by 14-3-3 depends on the dimerization of 14-3-3. However, the molecular cues that control 14-3-3 dimerization are not well understood. In order to identify proteins that control 14-3-3 dimerization, we analyzed proteins that have effects on 14-3-3 dimerization and report that protein kinase A (PKA) phosphorylates 14-3-3zeta at a specific residue (Ser58). Phosphorylation by PKA leads to modulation of 14-3-3zeta dimerization and affect its interaction with partner proteins. Substitution of Ser58 to Ala completely abolished phosphorylation of 14-3-3zeta by PKA. A phospho-mimic mutant of 14-3-3zeta, Ser58 to Glu substitution, failed to form homodimers, showed reduced interaction with 14-3-3epsilon and p53, and could not enhance transcriptional activity of p53. Moreover, activation of PKA decreases and inhibition of PKA increases the dimerization of 14-3-3zeta and the functional interaction of 14-3-3zeta with p53. Therefore, our results suggest that PKA is a new member of protein kinases that can phosphorylate and impair the function of 14-3-3.


Subject(s)
14-3-3 Proteins/metabolism , Amino Acid Substitution , Cyclic AMP-Dependent Protein Kinases/metabolism , Point Mutation , Tumor Suppressor Protein p53/metabolism , 14-3-3 Proteins/genetics , Amino Acid Motifs/genetics , Cell Line , Cyclic AMP-Dependent Protein Kinases/genetics , Dimerization , Enzyme Activation/genetics , Humans , Phosphorylation , Protein Binding/genetics , Protein Processing, Post-Translational/physiology , Tumor Suppressor Protein p53/genetics
SELECTION OF CITATIONS
SEARCH DETAIL