ABSTRACT
(1) Aim: Medulloblastoma is the most common aggressive pediatric cancer of the central nervous system. Improved therapies are necessary to improve life outcomes for medulloblastoma patients. Exosomes are a subset of extracellular vesicles that are excreted outside of the cell, and can transport nucleic acids and proteins from donor cells to nearby recipient cells of the same or dissimilar tissues. Few publications exist exploring the role that exosomes play in medulloblastoma pathogenesis. In this study, we found B7-H3, an immunosuppressive immune checkpoint, present in D283 cell-derived exosomes. (2) Methods: Utilizing mass spectrometry and immunoblotting, the presence of B7-H3 in D283 control and B7-H3 overexpressing exosomes was confirmed. Exosomes were isolated by Systems Biosciences from cultured cells as well as with an isolation kit that included ultracentrifugation steps. Overlay experiments were performed to determine mechanistic impact of exosomes on recipient cells by incubating isolated exosomes in serum-free media with target cells. Impact of D283 exosome incubation on endothelial and UW228 medulloblastoma cells was assessed by immunoblotting. Immunocytochemistry was employed to visualize exosome fusion with recipient cells. (3) Results: Overexpressing B7-H3 in D283 cells increases exosomal production and size distribution. Mass spectrometry revealed a host of novel, pathogenic molecules associated with B7-H3 in these exosomes including STAT3, CCL5, MMP9, and PI3K pathway molecules. Additionally, endothelial and UW228 cells incubated with D283-derived B7-H3-overexpressing exosomes induced B7-H3 expression while pSTAT1 levels decreased in UW228 cells. (4) Conclusions: In total, our results reveal a novel role in exosome production and packaging for B7-H3 that may contribute to medulloblastoma progression.
Subject(s)
B7 Antigens/metabolism , Carcinogenesis/metabolism , Cerebellar Neoplasms/metabolism , Exosomes/metabolism , Medulloblastoma/metabolism , HumansABSTRACT
Glioblastoma (GBM) is the most common type of adult primary brain tumor with a median survival rate of less than 15 months, regardless of the current standard of care. Cellular heterogeneity, self-renewal ability and tumorigenic glioma cancer stem cell (GSC) populations contribute to the difficulty in treating GBM. G-protein-coupled receptors (GPCRs) are the largest group of membrane proteins and mediate many cellular responses. Regulators of G-protein signaling 4 (RGS4) are negative regulators of G-protein signaling, and elevated levels of RGS4 are reportedly linked with several human diseases, including cancer. This study investigates the effect of silencing RGS4, resulting in inhibition of GSC growth, invasion and migration. Data obtained from The Cancer Genome Atlas (TCGA) demonstrated poor patient survival with high expression of RGS4. Immunohistochemistry and immunoblot analysis conducted on GBM patient biopsy specimens demonstrated increased RGS4 expression correlative with the TCGA data. RNA sequencing confirmed a significant decrease in the expression of markers involved in GSC invasion and migration, particularly matrix metalloproteinase-2 (MMP2) in knockout of RGS4 using CRISPR plasmid (ko-RGS4)-treated samples compared to parental controls. Gelatin zymography confirmed the reduced activity of MMP2 in ko-RGS4-treated samples. Silencing RGS4 further reduced the invasive and migratory abilities and induction of apoptosis of GSCs as evidenced by Matrigel plug assay, wound healing assay and human apoptosis array. Collectively, our results showed that the silencing of RGS4 plays an important role in regulating multiple cellular functions, and is an important therapeutic target in GBM.
Subject(s)
Brain Neoplasms/mortality , Glioblastoma/mortality , RGS Proteins/genetics , RGS Proteins/metabolism , Up-Regulation , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Matrix Metalloproteinase 2/metabolism , Neoplastic Stem Cells/metabolism , Prognosis , Sequence Analysis, RNA , Survival AnalysisABSTRACT
Medulloblastoma (MB) is the most frequent malignant pediatric brain tumor. Current treatment includes surgery, radiation and chemotherapy. However, ongoing treatment in patients is further classified according to the presence or absence of metastasis. Since metastatic medulloblastoma are refractory to current treatments, there is need to identify novel biomarkers that could be used to reduce metastatic potential, and more importantly be targeted therapeutically. Previously, we showed that ionizing radiation-induced uPAR overexpression is associated with increased accumulation of Ć-catenin in the nucleus. We further demonstrated that uPAR protein act as cytoplasmic sequestration factor for a novel basic helix-loop-helix transcription factor, Hand1. Among the histological subtypes classical and desmoplastic subtypes account for the majority while large cell/anaplastic variant is most commonly associated with metastatic disease. In this present study using immunohistochemical approach and patient data mining for the first time, we demonstrated that Hand1 expression is observed to be downregulated in all the subtypes of medulloblastoma. Previously we showed that Hand1 overexpression regulated medulloblastoma angiogenesis and here we investigated the role of Hand1 in the context of Epithelial-Mesenchymal Transition (EMT). Moreover, UW228 and D283 cells overexpressing Hand1 demonstrated decreased-expression of mesenchymal markers (N-cadherin, Ć-catenin and SOX2); metastatic marker (SMA); and increased expression of epithelial marker (E-cadherin). Strikingly, human pluripotent stem cell antibody array showed that Hand1 overexpression resulted in substantial decrease in pluripotency markers (Nanog, Oct3/4, Otx2, Flk1) suggesting that Hand1 expression may be essential to attenuate the EMT and our findings underscore a novel role for Hand1 in medulloblastoma metastasis.
Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Epithelial-Mesenchymal Transition/physiology , Medulloblastoma/metabolism , Medulloblastoma/secondary , beta Catenin/metabolism , Humans , Medulloblastoma/pathology , Neoplasm Invasiveness , Tumor Cells, Cultured , Up-Regulation , Wnt Signaling PathwayABSTRACT
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
ABSTRACT
Galectins are a family of Ć-galactose-specific binding proteins residing within the cytosol or nucleus, with a highly conserved carbohydrate recognition domain across many species. Accumulating evidence shows that Galectin 1 (Gal-1) plays an essential role in cancer, and its expression correlates with tumor aggressiveness and progression. Our preliminary data showed Gal-1 promotes glioma stem cell (GSC) growth via increased Warburg effect. mRNA expression and clinical data were obtained from The Cancer Genome Atlas database. The immunoblot analysis conducted using our cohort of human glioblastoma patient specimens (hGBM), confirmed Gal-1 upregulation in GBM. GC/MS analysis to evaluate the effects of Gal-1 depletion showed elevated levels of α-ketoglutaric acid, and citric acid with a concomitant reduction in lactic acid levels. Using Biolog microplate-1 mitochondrial functional assay, we confirmed that the depletion of Gal-1 increases the expression levels of the enzymes from the TCA cycle, suggesting a reversal of the Warburg phenotype. Manipulation of Gal-1 using RNA interference showed reduced ATP, lactate levels, cell viability, colony-forming abilities, and increased expression levels of genes implicated in the induction of apoptosis. Gal-1 exerts its metabolic role via regulating the expression of carbonic anhydrase IX (CA-IX), a surrogate marker for hypoxia. CA-IX functions downstream to Gal-1, and co-immunoprecipitation experiments along with proximity ligation assays confirm that Gal-1 physically associates with CA-IX to regulate its expression. Further, silencing of Gal-1 in mice models showed reduced tumor burden and increased survival compared to the mice implanted with GSC controls. Further investigation of Gal-1 in GSC progression and metabolic reprogramming is warranted.
Subject(s)
Carbonic Anhydrase IX , Galectin 1 , Glioblastoma , Animals , Antigens, Neoplasm/metabolism , Carbonic Anhydrase IX/metabolism , Cell Proliferation , Galectin 1/metabolism , Glioblastoma/enzymology , Glioblastoma/metabolism , Glioblastoma/pathology , MiceABSTRACT
Medulloblastoma (MB) is the most common malignant pediatric brain tumor. Maximum safe resection, postoperative craniospinal irradiation, and chemotherapy are the standard of care for MB patients. MB is classified into four subgroups: Shh, Wnt, Group 3, and Group 4. Of these subgroups, patients with Myc+ Group 3 MB have the worst prognosis, necessitating alternative therapies. There is increasing interest in targeting epigenetic modifiers for treating pediatric cancers, including MB. Using an RNAi functional genomic screen, we identified the lysine methyltransferase SMYD3, as a crucial epigenetic regulator that drives the growth of Group 3 Myc+ MB cells. We demonstrated that SMYD3 directly binds to the cyclin D3 promoter to activate its transcription. Further, SMYD3 depletion significantly reduced MB cell proliferation and led to the downregulation of cyclin D3, cyclin D1, pRBSer795, with concomitant upregulations in RB in vitro. Similar results were obtained following pharmacological inhibition of SMYD3 using BCI-121 ex vivo. SMYD3 knockdown also promoted cyclin D1 ubiquitination, indicating that SMYD3 plays a vital role in stabilizing the cyclin D1 protein. Collectively, our studies demonstrate that SMYD3 drives cell cycle progression in Group 3 Myc+ MB cells and that targeting SMYD3 has the potential to improve clinical outcomes for high-risk patients.
ABSTRACT
The molecular mechanisms underlying progression from astrocytoma to secondary glioblastoma are poorly understood. Telomerase reverse transcriptase (TERT), a gene encoding for the catalytic subunit of telomerase, is upregulated in various cancers. Upregulation of TERT is a likely mechanism by which malignant cells delay senescence and evade cell death. TERT activity is also the primary mechanism by which malignant cells replenish telomeres, with the other means of telomere replacement being the alternative lengthening of the telomeres (ALT) system. The ALT system is known to be upregulated in tumors harboring loss of function mutations in ATRX. This study analyzed aggregate data on TERT and ATRX expression in astrocytoma, anaplastic astrocytoma, and secondary glioblastoma and then supplemented the data with our findings. In data obtained from Oncomine, significantly higher TERT expression is seen in astrocytomas and secondary glioblastomas compared to normal brain tissue. Additionally, The Cancer Genome Atlas data shows that TERT expression is a significant predictor of overall survival in low-grade gliomas. However, studies comparing the expression of TERT across all grades of astrocytomas had not been performed to date. Using immunohistochemical staining, we showed that controlling for ATRX and IDH mutational status, TERT expression increased with tumor grade in a cohort of patient-derived astrocytoma, anaplastic astrocytoma, and secondary glioblastoma samples. These findings indicate that TERT expression increases as astrocytomas become more aggressive tumors, and probably plays a role in their progression.
ABSTRACT
Since the discovery of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019, the virus's dynamicity has resulted in the evolution of various variants, including the delta variant and the more novel mu variant. With a multitude of mutant strains posing as challenges to vaccine efficacy, it is critical that researchers embrace the development of pharmacotherapeutics specific to SARS-CoV-2 pathophysiology. Neutrophil extracellular traps and their constituents, including citrullinated histones, display a linear connection with thrombotic manifestations in COVID-19 patients. Peptidylarginine deiminases (PADs) are a group of enzymes involved in the modification of histone arginine residues by citrullination, allowing for the formation of NETs. PAD inhibitors, specifically PAD-4 inhibitors, offer extensive pharmacotherapeutic potential across a broad range of inflammatory diseases such as COVID-19, through mediating NETs formation. Although numerous PAD-4 inhibitors exist, current literature has not explored the depth of utilizing these inhibitors clinically to treat thrombotic complications in COVID-19 patients. This review article offers the clinical significance of PAD-4 inhibitors in reducing thrombotic complications across various inflammatory disorders like COVID-19 and suggests that these inhibitors may be valuable in treating the origin of SARS-CoV-2 immunothrombosis.
ABSTRACT
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. With a designation of WHO Grade IV, it is also the most lethal primary brain tumor with a median survival of just 15 months. This is often despite aggressive treatment that includes surgical resection, radiation therapy, and chemotherapy. Based on the poor outcomes and prevalence of the tumor, the demand for innovative therapies continues to represent a pressing issue for clinicians and researchers. In terms of therapies targeting metabolism, the prevalence of the Warburg effect has led to a focus on targeting glucose metabolism to halt tumor progression. While glucose is the dominant source of growth substrate in GBM, a number of unique metabolic pathways are exploited in GBM to meet the increased demand for replication and progression. In this review we aim to explore how metabolites from fatty acid oxidation, the urea cycle, the glutamate-glutamine cycle, and one-carbon metabolism are shunted toward energy producing pathways to meet the high energy demand in GBM. We will also explore how the process of autophagy provides a reservoir of nutrients to support viable tumor cells. By so doing, we aim to establish a foundation of implicated metabolic mechanisms supporting growth and tumorigenesis of GBM within the literature. With the sparse number of therapeutic interventions specifically targeting metabolic pathways in GBM, we hope that this review expands further insight into the development of novel treatment modalities.
Subject(s)
Brain Neoplasms/pathology , Energy Metabolism , Glioblastoma/pathology , Glucose/metabolism , Animals , Brain Neoplasms/metabolism , Glioblastoma/metabolism , HumansABSTRACT
The pandemic brought on by the outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) has become a global health crisis, with over 22 million confirmed cases and 777,000 fatalities due to coronavirus disease 2019 (COVID-19) reported worldwide. The major cause of fatality in infected patients, now referred to as the "Cytokine Storm Syndrome" (CSS), is a direct result of aberrant immune activation following SARS-CoV2 infection and results in excess release of inflammatory cytokines, such as interleukin (IL)-1, tumor necrosis factor α (TNF-α), and IL-6, by macrophages, monocytes, and dendritic cells. Single cell analysis has also shown significantly elevated levels of galectin 3 (Gal-3) in macrophages, monocytes, and dendritic cells in patients with severe COVID-19 as compared to mild disease. Inhibition of Gal-3 reduces the release of IL-1, IL-6, and TNF-α from macrophages in vitro, and as such may hold promise in reducing the incidence of CSS. In addition, Gal-3 inhibition shows promise in reducing transforming growth factor Ć (TGF-Ć) mediated pulmonary fibrosis, likely to be a major consequence in survivors of severe COVID-19. Finally, a key domain in the spike protein of SARS-CoV2 has been shown to bind N-acetylneuraminic acid (Neu5Ac), a process that may be essential to cell entry by the virus. This Neu5Ac-binding domain shares striking morphological, sequence, and functional similarities with human Gal-3. Here we provide an updated review of the literature linking Gal-3 to COVID-19 pathogenesis. Dually targeting galectins and the Neu5Ac-binding domain of SARS-CoV2 shows tentative promise in several stages of the disease: preventing viral entry, modulating the host immune response, and reducing the post-infectious incidence of pulmonary fibrosis.
Subject(s)
Coronavirus Infections/pathology , Cytokine Release Syndrome/virology , Galectin 3/immunology , Pneumonia, Viral/pathology , Betacoronavirus , COVID-19 , Humans , N-Acetylneuraminic Acid , Pandemics , SARS-CoV-2ABSTRACT
The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2), the causative agent of coronavirus disease 2019 (COVID-19), has been declared a global pandemic by the World Health Organization. With no standard of care for the treatment of COVID-19, there is an urgent need to identify therapies that may be effective in treatment. Recent evidence has implicated the development of cytokine release syndrome as the major cause of fatality in COVID-19 patients, with elevated levels of interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) observed in patients. Galectin-3 (Gal-3) is an animal lectin that has been implicated in the disease process of a variety of inflammatory conditions. Inhibitors of the small molecule Gal-3 have been shown to reduce the levels of both IL-6 and TNF-α in vitro and have shown anti-inflammatory effects in vivo. Additionally, a key domain in the spike protein of Ć-coronaviridae, a genus which includes SARS-CoV2, is nearly identical in morphology to human Gal-3. These spike proteins are critical for the virus' entry into host cells. Here we provide a systematic review of the available literature and an impetus for further research on the use of Gal-3 inhibitors in the treatment of COVID-19. Further, we propose a dual mechanism by which Gal-3 inhibition may be beneficial in the treatment of COVID-19, both suppressing the host inflammatory response and impeding viral attachment to host cells.
ABSTRACT
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that serves many roles in inflammation and immunity; however, it is also involved in carcinogenesis. This is a review of the clinical and experimental data published on MIF and its role in various types of cancers such as glioblastomas, lung cancer, breast cancer, gastric cancer, melanoma, bladder cancer, and head and neck cancers. The goal of this review is to show MIFs role in various types of cancers. Data show that MIF is overexpressed in these malignancies in humans, and contributes to the deregulation of the cell cycle, angiogenesis, and metastasis. Clinical studies show that MIF overexpression in these types of tumors significantly decreases survival rate, and increases tumor aggression. There are multiple anti-MIF molecules that are currently being explored and investigations should be continued.
ABSTRACT
Medulloblastoma (MB) is the most common embryonal neuroepithelial tumor, with poor patient outcomes and secondary complications. In this study, we investigated the role of the B7 family of immune checkpoint homolog 3 (B7-H3) expression in MB angiogenesis. B7-H3, a co-inhibitory immune checkpoint, is highly expressed and is associated with lower overall survival in MYC+ MB's. Evidence for a direct transcriptional role of MYC on the B7-H3 gene promoter was confirmed by MYC inhibition and anti-MYC antibody ChIP analysis. Interestingly, MYC inhibition not only downregulated the B7-H3 protein expression, but also rescued miR-29 expression, thus indicating a triangular regulatory relationship between MYC, miR-29, and B7-H3 in Group 3 MB cells. From RNA seq and IPAD assay, we observed a negative feedback loop between miR-29 and MYC that may control B7-H3 expression levels in MB cells. Our studies show that B7-H3 expression levels play a crucial role in promoting MB angiogenesis which can be inhibited by miR-29 overexpression via miR-29-mediated B7-H3 downregulation. The tumor suppressor role of miR-29 is mediated by the activation of JAK/STAT1 signaling that further plays a role in MYC-B7-H3 downregulation in MB. This study highlights B7-H3 as a viable target in MB angiogenesis, and that the expression of miR-29 can inhibit B7-H3 and sensitize MB cells to treatment with MYC-inhibiting drugs.
ABSTRACT
Glioblastoma multiforme (GBM) is the most aggressive and deadly brain tumor, portending a median 13-month survival even following gross total resection with adjuvant chemotherapy and radiotherapy. This prognosis necessitates improved therapies for the disease. A target of interest for novel chemotherapies is the Warburg Effect, which describes the tumor's shift away from oxidative phosphorylation towards glycolysis. Here, we elucidate GLUT1 (Glucose transporter 1) and one of its associated binding partners, TUBB4 (Tubulin 4), as potentially druggable targets in GBM. Using data mining approach, we demonstrate that GLUT1 is overexpressed as a function of tumor grade in astrocytoma's and that its overexpression is associated with poorer prognosis. Using both mass spectrometry performed on hGBM (human glioblastoma patient specimen) and in silico modeling, we show that GLUT1 interacts with TUBB4, and more accurately demonstrates GLUT1's binding with fasentin. Proximity ligation assay (PLA) and immunoprecipitation studies confirm GLUT1 interaction with TUBB4. Treatment of GSC33 and GSC28 cells with TUBB4 inhibitor, CR-42-24, reduces the expression of GLUT1 however, TUBB4 expression is unaltered upon fasentin treatment. Using human pluripotent stem cell antibody array, we demonstrate reduced levels of Oct3/4, Nanog, Sox2, Sox17, Snail and VEGFR2 (Vascular endothelial growth factor receptor 2) upon CR-42-24 treatment. Overall, our data confirm that silencing TUBB4 or GLUT1 reduce GSC tumorsphere formation, self-renewal and proliferation in vitro. These findings suggest GLUT1 and its binding partner TUBB4 as druggable targets that warrant further investigation in GBM.
ABSTRACT
Monocarboxylate transporters (MCTs) represent a diverse group of transmembrane proteins encoded by the SLC16 gene family found ubiquitously across mammalian species. Two members of this family, MCT1 and MCT4, have been linked to key roles in the metabolic activity of tissues through the proton-coupled transport of monocarboxylates, most notably L-lactate, ketone bodies, and pyruvate. This review aims to provide an overview of MCT1 and MCT4, followed by the implications of their expression in a multitude of cancers and in glioblastoma (GBM) specifically. Further, the possible mechanisms underlying these effects will be discussed. Given the relationships between MCT1 and MCT4 and cancer, they offer a unique opportunity for novel treatment strategies. We aim to explore current therapies focused on MCT1 and MCT4 and propose future studies to better understand their role in GBM to optimize future treatment regimens.
ABSTRACT
Dysregulated metabolism in the form of aerobic glycolysis occurs in many cancers including breast carcinoma. Here, we report PDK4 (pyruvate dehydrogenase kinase 4) as key enzyme implicated in the control of glucose metabolism and mitochondrial respiration is relatively highly expressed in breast cancers, and its expression correlates with poor patient outcomes. Silencing of PDK4 and ectopic expression of miR-211 attenuates PDK4 expression in breast cancer cells. Interestingly, low miR-211 expression is significantly associated with shorter overall survival and reveals an inverse correlation between expression of miR-211 and PDK4. We have found that depletion of PDK4 by miR-211 shows an oxidative phosphorylation-dominant phenotype consisting of the reduction of glucose with increased expression of PDH and key enzymes of the TCA cycle. miR-211 expression causes alteration of mitochondrial membrane potential and induces mitochondrial apoptosis as observed via IPAD assay. Further, by inhibiting PDK4 expression, miR-211 promotes a phenotype shift towards a pro-glycolytic state evidenced by decreased extracellular acidification rate (ECAR); increased oxygen consumption rate (OCR); and increased spare respiratory capacity in breast cancer cell lines. Taken together this data establishes a molecular connection between PDK4 and miR-211 and suggests that targeting miR-211 to inhibit PDK4 could represent a novel therapeutic strategy in breast cancers.
ABSTRACT
CNS Primitive Neuroectodermal tumors (CNS-PNETs) are members of the embryonal family of malignant childhood brain tumors, which remain refractory to current therapeutic treatments. Current paradigm of brain tumorigenesis implicates brain tumor-initiating cells (BTIC) in the onset of tumorigenesis and tumor maintenance. However, despite their significance, there is currently no comprehensive characterization of CNS-PNETs BTICs. Recently, we described an animal model of CNS-PNET generated by orthotopic transplantation of human Radial Glial (RG) cells - the progenitor cells for adult neural stem cells (NSC) - into NOD-SCID mice brain and proposed that BTICs may play a role in the maintenance of these tumors. Here we report the characterization of BTIC lines derived from this CNS-PNET animal model. BTIC's orthotopic transplantation generated highly aggressive tumors also characterized as CNS-PNETs. The BTICs have the hallmarks of NSCs as they demonstrate self-renewing capacity and have the ability to differentiate into astrocytes and early migrating neurons. Moreover, the cells demonstrate aberrant accumulation of wild type tumor-suppressor protein p53, indicating its functional inactivation, highly up-regulated levels of onco-protein cMYC and the BTIC marker OCT3/4, along with metabolic switch to glycolysis - suggesting that these changes occurred in the early stages of tumorigenesis. Furthermore, based on RNA- and DNA-seq data, the BTICs did not acquire any transcriptome-changing genomic alterations indicating that the onset of tumorigenesis may be epigenetically driven. The study of these BTIC self-renewing cells in our model may enable uncovering the molecular alterations that are responsible for the onset and maintenance of the malignant PNET phenotype.
ABSTRACT
Glioblastomas are characterized by amplification of EGFR. Approximately half of tumors with EGFR over-expression also express a constitutively active ligand independent EGFR variant III (EGFRvIII). While current treatments emphasize surgery followed by radiation and chemotherapy with Temozolomide (TMZ), acquired chemoresistance is a universal feature of recurrent GBMs. To mimic the GBM resistant state, we generated an in vitro TMZ resistant model and demonstrated that dichloroacetate (DCA), a metabolic inhibitor of pyruvate dehydrogenase kinase 1 (PDK1), reverses the Warburg effect. Microarray analysis conducted on the TMZ resistant cells with their subsequent treatment with DCA revealed PDK1 as its sole target. DCA treatment also induced mitochondrial membrane potential change and apoptosis as evidenced by JC-1 staining and electron microscopic studies. Computational homology modeling and docking studies confirmed DCA binding to EGFR, EGFRvIII and PDK1 with high affinity. In addition, expression of EGFRvIII was comparable to PDK1 when compared to EGFR in GBM surgical specimens supporting our in silico prediction data. Collectively our current study provides the first in vitro proof of concept that DCA reverses the Warburg effect in the setting of EGFRvIII positivity and TMZ resistance leading to GBM cytotoxicity, implicating cellular tyrosine kinase signaling in cancer cell metabolism.
Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Antineoplastic Agents, Alkylating/pharmacology , Dacarbazine/analogs & derivatives , Drug Resistance, Neoplasm , ErbB Receptors/metabolism , Glioblastoma/metabolism , Signal Transduction/drug effects , 3-Phosphoinositide-Dependent Protein Kinases/chemistry , Animals , Antineoplastic Agents, Alkylating/chemistry , Binding Sites , Cell Line, Tumor , Dacarbazine/chemistry , Dacarbazine/pharmacology , Disease Models, Animal , ErbB Receptors/chemistry , Female , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/pathology , Glycolysis/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Mice , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/ultrastructure , Models, Molecular , Molecular Conformation , Permeability , Phosphorylation , Protein Binding , Temozolomide , Xenograft Model Antitumor AssaysABSTRACT
Medulloblastoma is one of the most prevalent pediatric brain malignancies, accounting for approximately 20% of all primary CNS tumors in children under the age of 19. OTX2 is the member of a highly conserved family of bicoid-like homeodomain transcription factors responsible for the regulation of cerebellar development and of current investigational interest in the tumorigenesis of medulloblastoma. Recent studies have revealed that Group 3 and Group 4 medulloblastomas show marked overexpression of OTX2 with a concurrent amplification of the MYC and MYCN oncogenes, respectively, correlating with anaplasticity and unfavorable patient outcomes. More recent attempts at elucidating the mechanism of OTX2-driven oncogenesis at the cellular level has also revealed that OTX2 may confer stem-cell like properties to tumor cells via epigenetic regulation. The review seeks to define the interaction pathways and binding partners involved in OTX2 function, its usefulness as a molecular marker for risk stratification and prognosis, and the mechanism by which it drives tumor maintenance. Additionally, it will preview unpublished data by our group highlighting the unanticipated involvement of OTX2 in the control of cellular metabolism.
ABSTRACT
The field of immunotherapy is a continually expanding niche in cancer biology research. In the last two decades, there has been significant progress in identifying better targets and creating more specific agents for therapy in the field. B7-H3 (CD276) is an immune checkpoint from the B7 family of molecules, many of whom interact with known checkpoint markers including CTLA4, PD-1, and CD28. This is an exciting molecule that is overexpressed in many cancers, although the receptor of B7-H3 has not been characterized. Initially, B7-H3 was thought to co-stimulate the immune response, but recent studies have shown that it has a co-inhibitory role on T-cells, contributing to tumor cell immune evasion. Therefore, its overexpression has been linked to poor prognosis in human patients and to invasive and metastatic potential of tumors in in vitro models. Moreover, recent evidence has shown that B7-H3 influences cancer progression beyond the immune regulatory roles. In this review, we aim to characterize the roles of B7-H3 in different cancers, its relationship with other immune checkpoints, and its non-immunological function in cancer progression. Targeting B7-H3 in cancer treatment can reduce cell proliferation, progression, and metastasis, which may ultimately lead to improved therapeutic options and better clinical outcomes.