Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Nucleic Acids Res ; 52(D1): D92-D97, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37956313

ABSTRACT

The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena) is maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI). The ENA is one of the three members of the International Nucleotide Sequence Database Collaboration (INSDC). It serves the bioinformatics community worldwide via the submission, processing, archiving and dissemination of sequence data. The ENA supports data types ranging from raw reads, through alignments and assemblies to functional annotation. The data is enriched with contextual information relating to samples and experimental configurations. In this article, we describe recent progress and improvements to ENA services. In particular, we focus upon three areas of work in 2023: FAIRness of ENA data, pandemic preparedness and foundational technology. For FAIRness, we have introduced minimal requirements for spatiotemporal annotation, created a metadata-based classification system, incorporated third party metadata curations with archived records, and developed a new rapid visualisation platform, the ENA Notebooks. For foundational enhancements, we have improved the INSDC data exchange and synchronisation pipelines, and invested in site reliability engineering for ENA infrastructure. In order to support genomic surveillance efforts, we have continued to provide ENA services in support of SARS-CoV-2 data mobilisation and have adapted these for broader pathogen surveillance efforts.


Subject(s)
Genomics , Nucleotides , Computational Biology , Databases, Nucleic Acid , Internet , Reproducibility of Results , Europe
2.
Nucleic Acids Res ; 51(D1): D121-D125, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36399492

ABSTRACT

The European Nucleotide Archive (ENA; https://www.ebi.ac.uk/ena), maintained by the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI), offers those producing data an open and supported platform for the management, archiving, publication, and dissemination of data; and to the scientific community as a whole, it offers a globally comprehensive data set through a host of data discovery and retrieval tools. Here, we describe recent updates to the ENA's submission and retrieval services as well as focused efforts to improve connectivity, reusability, and interoperability of ENA data and metadata.


Subject(s)
Databases, Nucleic Acid , Academies and Institutes , Computational Biology , Internet , Software , Datasets as Topic
3.
J Infect Dev Ctries ; 18(6): 851-861, 2024 Jun 30.
Article in English | MEDLINE | ID: mdl-38990988

ABSTRACT

INTRODUCTION: In Senegal, molecular diagnosis was widely used for the detection and management of COVID-19 patients. However, genomic surveillance was very limited in the public sector. This study aimed to share the experience of a Senegalese public sector laboratory in response to the COVID-19 pandemic, and to describe the distribution of variants circulating in 2020 and 2021. METHODOLOGY: From July 2020 to December 2021, SARS-CoV-2 qRT-PCR was performed on nasopharyngeal samples from travelers and symptomatic patients at the Bacteriology and Virology Laboratory (LBV) of the Aristide le Dantec University Teaching Hospital. Samples with a cycle threshold (Ct) ≤ 30 were selected for whole-genome sequencing (WGS) using the Nanopore technology. In-house scripts were developed to study the spatial and temporal distribution of SARS-CoV-2 variants in Senegal, using our sequences and those retrieved from the GISAID database. RESULTS: Of 8,207 patients or travelers screened for SARS-CoV-2, 970 (11.8%) were positive and 386 had a Ct ≤ 30. WGS was performed on 133 samples. Concomitantly with high-quality sequences deposited in the GISAID database covering nine cities in Senegal in 2020 and 2021 (n = 1,539), we observed a high circulation of the 20A (B.1, B.1.416 and B.1.620) and 20B (B.1.1.420) lineages in 2020, while most of the samples belonged to Delta variants (AY34 and AY.34.1, 22%) in 2021. CONCLUSIONS: Despite its late involvement, COVID-19 diagnosis was routinely performed in LBV, but genomic characterization remained challenging. The genomic diversity of SARS-CoV-2 strains in Senegal reflected that observed worldwide during the first waves of the pandemic.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Humans , Senegal/epidemiology , COVID-19/epidemiology , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Whole Genome Sequencing , Molecular Epidemiology , Nasopharynx/virology , Adult , Male , Female , Phylogeny , Middle Aged
4.
Microb Genom ; 10(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38358325

ABSTRACT

The COVID-19 pandemic has seen large-scale pathogen genomic sequencing efforts, becoming part of the toolbox for surveillance and epidemic research. This resulted in an unprecedented level of data sharing to open repositories, which has actively supported the identification of SARS-CoV-2 structure, molecular interactions, mutations and variants, and facilitated vaccine development and drug reuse studies and design. The European COVID-19 Data Platform was launched to support this data sharing, and has resulted in the deposition of several million SARS-CoV-2 raw reads. In this paper we describe (1) open data sharing, (2) tools for submission, analysis, visualisation and data claiming (e.g. ORCiD), (3) the systematic analysis of these datasets, at scale via the SARS-CoV-2 Data Hubs as well as (4) lessons learnt. This paper describes a component of the Platform, the SARS-CoV-2 Data Hubs, which enable the extension and set up of infrastructure that we intend to use more widely in the future for pathogen surveillance and pandemic preparedness.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Pandemics , COVID-19/epidemiology , Genomics , Information Dissemination
5.
Vaccines (Basel) ; 11(10)2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37896941

ABSTRACT

Dengue fever is the most prevalent arboviral disease worldwide. Dengue virus (DENV), the etiological agent, is known to have been circulating in Senegal since 1970, though for a long time, virus epidemiology was restricted to the circulation of sylvatic DENV-2 in south-eastern Senegal (the Kedougou region). In 2009 a major shift was noticed with the first urban epidemic, which occurred in the Dakar region and was caused by DENV-3. Following the notification by Senegal, many other West African countries reported DENV-3 epidemics. Despite these notifications, there are scarce studies and data about the genetic diversity and molecular evolution of DENV-3 in West Africa. Using nanopore sequencing, phylogenetic, and phylogeographic approaches on historic strains and 36 newly sequenced strains, we studied the molecular evolution of DENV-3 in Senegal between 2009 and 2022. We then assessed the impact of the observed genetic diversity on the efficacy of preventive countermeasures and vaccination by mapping amino acid changes against vaccine strains. The results showed that the DENV-3 strains circulating in Senegal belong to genotype III, similarly to strains from other West African countries, while belonging to different clades. Phylogeographic analysis based on nearly complete genomes revealed three independent introduction events from Asia and Burkina Faso. Comparison of the amino acids in the CprM-E regions of genomes from the Senegalese strains against the vaccine strains revealed the presence of 22 substitutions (7 within the PrM and 15 within the E gene) when compared to CYD-3, while 23 changes were observed when compared to TV003 (6 within the PrM and 17 within the E gene). Within the E gene, most of the changes compared to the vaccine strains were located in the ED-III domain, which is known to be crucial in neutralizing antibody production. Altogether, these data give up-to-date insight into DENV-3 genomic evolution in Senegal which needs to be taken into account in future vaccination strategies. Additionally, they highlight the importance of the genomic epidemiology of emerging pathogens in Africa and call for the implementation of a pan-African network for genomic surveillance of dengue virus.

6.
New Microbes New Infect ; 47: 100990, 2022.
Article in English | MEDLINE | ID: mdl-35747620

ABSTRACT

•Omicron variant continues to progress in Senegal with the appearance of new contaminations.•IRESSEF detected the first positive case of the Omicron variant on Friday, December 3, 2021.•Since this date, the number of Omicron variant infections has increased over the weeks.•Molecular surveillance of the Omicron variant allowed us to identify a strong variation of this variant in our country.

SELECTION OF CITATIONS
SEARCH DETAIL