ABSTRACT
BACKGROUND: Generalized pustular psoriasis is a life-threatening disease of unknown cause. It is characterized by sudden, repeated episodes of high-grade fever, generalized rash, and disseminated pustules, with hyperleukocytosis and elevated serum levels of C-reactive protein, which may be associated with plaque-type psoriasis. METHODS: We performed homozygosity mapping and direct sequencing in nine Tunisian multiplex families with autosomal recessive generalized pustular psoriasis. We assessed the effect of mutations on protein expression and conformation, stability, and function. RESULTS: We identified significant linkage to an interval of 1.2 megabases on chromosome 2q13-q14.1 and a homozygous missense mutation in IL36RN, encoding an interleukin-36-receptor antagonist (interleukin-36Ra), an antiinflammatory cytokine. This mutation predicts the substitution of a proline residue for leucine at amino acid position 27 (L27P). Homology-based structural modeling of human interleukin-36Ra suggests that the proline at position 27 affects both the stability of interleukin-36Ra and its interaction with its receptor, interleukin-1 receptor-like 2 (interleukin-1 receptor-related protein 2). Biochemical analyses showed that the L27P variant was poorly expressed and less potent than the nonvariant interleukin-36Ra in inhibiting a cytokine-induced response in an interleukin-8 reporter assay, leading to enhanced production of inflammatory cytokines (interleukin-8 in particular) by keratinocytes from the patients. CONCLUSIONS: Aberrant interleukin-36Ra structure and function lead to unregulated secretion of inflammatory cytokines and generalized pustular psoriasis. (Funded by Agence Nationale de la Recherche and Société Française de Dermatologie.).
Subject(s)
Interleukin-1/metabolism , Psoriasis/genetics , Receptors, Interleukin/antagonists & inhibitors , Female , Genes, Recessive , Genetic Linkage , Humans , Interleukin-1/genetics , Male , Mutation , Pedigree , Signal Transduction , Skin Diseases, Vesiculobullous , TunisiaABSTRACT
Hutchinson-Gilford progeria syndrome (HGPS) is an extremely rare genetic disorder associated with features of accelerated aging. HGPS is an autosomal dominant disease caused by a de novo mutation of LMNA gene, encoding A-type lamins, resulting in the truncated form of pre-lamin A called progerin. While asymptomatic at birth, patients develop symptoms within the first year of life when they begin to display accelerated aging and suffer from growth retardation, and severe cardiovascular complications including loss of vascular smooth muscle cells (VSMCs). Recent works reported the loss of VSMCs as a major factor triggering atherosclerosis in HGPS. Here, we investigated the mechanisms by which progerin expression leads to massive VSMCs loss. Using aorta tissue and primary cultures of murine VSMCs from a mouse model of HGPS, we showed increased VSMCs death associated with increased poly(ADP-Ribosyl)ation. Poly(ADP-Ribosyl)ation is recognized as a post-translational protein modification that coordinates the repair at DNA damage sites. Poly-ADP-ribose polymerase (PARP) catalyzes protein poly(ADP-Ribosyl)ation by utilizing nicotinamide adenine dinucleotide (NAD+). Our results provided the first demonstration linking progerin accumulation, augmented poly(ADP-Ribosyl)ation and decreased nicotinamide adenine dinucleotide (NAD+) level in VSMCs. Using high-throughput screening on VSMCs differentiated from iPSCs from HGPS patients, we identified a new compound, trifluridine able to increase NAD+ levels through decrease of PARP-1 activity. Lastly, we demonstrate that trifluridine treatment in vivo was able to alleviate aortic VSMCs loss and clinical sign of progeria, suggesting a novel therapeutic approach of cardiovascular disease in progeria.
Subject(s)
Disease Models, Animal , Lamin Type A , Muscle, Smooth, Vascular , Myocytes, Smooth Muscle , Progeria , Animals , Muscle, Smooth, Vascular/metabolism , Muscle, Smooth, Vascular/pathology , Muscle, Smooth, Vascular/drug effects , Progeria/pathology , Progeria/genetics , Progeria/metabolism , Mice , Humans , Myocytes, Smooth Muscle/metabolism , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , Lamin Type A/metabolism , Lamin Type A/genetics , Aorta/pathology , Aorta/drug effects , Aorta/metabolism , Poly ADP Ribosylation , Mice, Inbred C57BL , Poly(ADP-ribose) Polymerase Inhibitors/pharmacologyABSTRACT
Autosomal-recessive inheritance accounts for nearly 25% of nonsyndromic mental retardation (MR), but the extreme heterogeneity of such conditions markedly hampers gene identification. Combining autozygosity mapping and RNA expression profiling in a consanguineous Tunisian family of three MR children with mild microcephaly and white-matter abnormalities identified the TRAPPC9 gene, which encodes a NF-kappaB-inducing kinase (NIK) and IkappaB kinase complex beta (IKK-beta) binding protein, as a likely candidate. Sequencing analysis revealed a nonsense variant (c.1708C>T [p.R570X]) within exon 9 of this gene that is responsible for an undetectable level of TRAPPC9 protein in patient skin fibroblasts. Moreover, TNF-alpha stimulation assays showed a defect in IkBalpha degradation, suggesting impaired NF-kappaB signaling in patient cells. This study provides evidence of an NF-kappaB signaling defect in isolated MR.
Subject(s)
Gene Expression Profiling , Genetic Linkage , Intellectual Disability/genetics , NF-kappa B/genetics , Oligonucleotide Array Sequence Analysis , Adolescent , Base Sequence , Brain/metabolism , Female , Gene Expression Regulation , Genes, Recessive , Humans , I-kappa B Kinase/metabolism , Magnetic Resonance Imaging , Male , Molecular Sequence Data , Pedigree , Tumor Necrosis Factor-alpha/metabolismABSTRACT
Assessing the solid wood content is crucial when acquiring stacked roundwood. A frequently used method for this is to multiply determined conversion factors by the measured gross volume. However, the conversion factors are influenced by several log and stack parameters. Although these parameters have been identified and studied, their individual influence has not yet been analyzed using a broad statistical basis. This is due to the considerable financial resources that the data collection entails. To overcome this shortcoming, a 3D-simulation model was developed. It generates virtual wood stacks of randomized composition based on one individual data set of logs, which may be real or defined by the user. In this study, the development and evaluation of the simulation model are presented. The model was evaluated by conducting a sensitivity and a quantitative analysis of the simulation outcomes based on real measurements of 405 logs of Norway spruce and 20 stacks constituted with these. The results of the simulation outcomes revealed a small overestimation of the net volume of real stacks: by 1.2% for net volume over bark and by 3.2% for net volume under bark. Furthermore, according to the calculated mean bias error (MBE), the model underestimates the gross volume by 0.02%. In addition, the results of the sensitivity analysis confirmed the capability of the model to adequately consider variations in the input parameters and to provide reliable outcomes.
Subject(s)
Picea , Wood , Computer Simulation , Norway , SoftwareABSTRACT
Hypohidrotic and anhidrotic ectodermal dysplasia (HED/EDA) is a rare genodermatosis characterized by abnormal development of sweat glands, teeth, and hair. Three disease-causing genes have been hitherto identified, namely, (1) EDA1 accounting for X-linked forms, (2) EDAR, and (3) EDARADD, causing both autosomal dominant and recessive forms. Recently, WNT10A gene was identified as responsible for various autosomal recessive forms of ectodermal dysplasias, including onycho-odonto-dermal dysplasia (OODD) and Schöpf-Schulz-Passarge syndrome. We systematically studied EDA1, EDAR, EDARADD, and WNT10A genes in a large cohort of 65 unrelated patients, of which 61 presented with HED/EDA. A total of 50 mutations (including 32 novel mutations) accounted for 60/65 cases in our series. These four genes accounted for 92% (56/61 patients) of HED/EDA cases: (1) the EDA1 gene was the most common disease-causing gene (58% of cases), (2)WNT10A and EDAR were each responsible for 16% of cases. Moreover, a novel disease locus for dominant HED/EDA mapped to chromosome 14q12-q13.1. Although no clinical differences between patients carrying EDA1, EDAR, or EDARADD mutations could be identified, patients harboring WNT10A mutations displayed distinctive clinical features (marked dental phenotype, no facial dysmorphism), helping to decide which gene should be first investigated in HED/EDA.
Subject(s)
Ectodermal Dysplasia/genetics , Ectodysplasins/genetics , Edar Receptor/genetics , Edar-Associated Death Domain Protein/genetics , Mutation , Wnt Proteins/genetics , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Phenotype , Young AdultABSTRACT
Early-born γ-aminobutyric acid (GABA) neurons (EBGNs) are major components of the hippocampal circuit because at early postnatal stages they form a subpopulation of "hub cells" transiently supporting CA3 network synchronization (Picardo et al. [2011] Neuron 71:695-709). It is therefore essential to determine when these cells acquire the remarkable morphofunctional attributes supporting their network function and whether they develop into a specific subtype of interneuron into adulthood. Inducible genetic fate mapping conveniently allows for the labeling of EBGNs throughout their life. EBGNs were first analyzed during the perinatal week. We observed that EBGNs acquired mature characteristics at the time when the first synapse-driven synchronous activities appeared in the form of giant depolarizing potentials. The fate of EBGNs was next analyzed in the adult hippocampus by using anatomical characterization. Adult EBGNs included a significant proportion of cells projecting selectively to the septum; in turn, EBGNs were targeted by septal and entorhinal inputs. In addition, most EBGNs were strongly targeted by cholinergic and monoaminergic terminals, suggesting significant subcortical innervation. Finally, we found that some EBGNs located in the septum or the entorhinal cortex also displayed a long-range projection that we traced to the hippocampus. Therefore, this study shows that the maturation of the morphophysiological properties of EBGNs mirrors the evolution of early network dynamics, suggesting that both phenomena may be causally linked. We propose that a subpopulation of EBGNs forms into adulthood a scaffold of GABAergic projection neurons linking the hippocampus to distant structures. J. Comp. Neurol. 524:2440-2461, 2016. © 2016 Wiley Periodicals, Inc.
Subject(s)
Hippocampus/embryology , Hippocampus/growth & development , Neurogenesis/physiology , Neurons/physiology , gamma-Aminobutyric Acid/physiology , Age Factors , Animals , Animals, Newborn , Hippocampus/chemistry , Mice , Mice, Transgenic , Nerve Net/chemistry , Nerve Net/embryology , Nerve Net/growth & development , Neurons/chemistry , gamma-Aminobutyric Acid/analysisABSTRACT
Connectivity in the developing hippocampus displays a functional organization particularly effective in supporting network synchronization, as it includes superconnected hub neurons. We have previously shown that hub network function is supported by a subpopulation of GABA neurons. However, it is unclear whether hub cells are only transiently present or later develop into distinctive subclasses of interneurons. These questions are difficult to assess given the heterogeneity of the GABA neurons and the poor early expression of markers. To circumvent this conundrum, we used "genetic fate mapping" that allows for the selective labeling of GABA neurons based on their place and time of origin. We show that early-generated GABA cells form a subpopulation of hub neurons, characterized by an exceptionally widespread axonal arborization and the ability to single-handedly impact network dynamics when stimulated. Pioneer hub neurons remain into adulthood, when they acquire the classical markers of long-range projecting GABA neurons.
Subject(s)
Hippocampus/cytology , Hippocampus/growth & development , Neurons/physiology , gamma-Aminobutyric Acid/metabolism , Action Potentials/physiology , Animals , Axons/metabolism , Axons/ultrastructure , Cell Lineage , Female , Hippocampus/metabolism , Interneurons/cytology , Interneurons/physiology , Male , Mice , Mice, Transgenic , Neurogenesis/physiology , Neurons/cytology , Patch-Clamp TechniquesABSTRACT
Mutations of the EPCAM gene have been recently identified in Congenital Tufting Enteropathy (CTE), a severe autosomal recessive gastrointestinal insufficiency of childhood requiring parenteral nutrition and occasionally intestinal transplantation. Studying seven multiplex consanguineous families from the Arabic peninsula (Kuwait and Qatar) we found that most patients were homozygote for a c.498insC mutation in exon 5. The others carried a novel mutation IVS4-2AâG. Both mutations were predicted to truncate the C-terminal domain necessary to anchorage of EPCAM at the intercellular membrane. Consistently, immunohistochemistry of intestinal biopsies failed to detect the EPCAM protein at the intercellular membrane level. The c.498insC mutation was found on the background of a minimal common haplotype of 473kb suggesting a very old founder effect (5000-6000 yrs).