Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
J Hepatol ; 79(5): 1150-1158, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37479139

ABSTRACT

BACKGROUND & AIMS: Acute hepatic porphyria (AHP) is caused by defects in hepatic heme biosynthesis, leading to disabling acute neurovisceral attacks and chronic symptoms. In ENVISION (NCT03338816), givosiran treatment for 6 months reduced attacks and other disease manifestations compared with placebo. Herein, we report data from the 36-month final analysis of ENVISION. METHODS: Ninety-four patients with AHP (age ≥12 years) and recurrent attacks were randomized 1:1 to monthly double-blind subcutaneous givosiran 2.5 mg/kg (n = 48) or placebo (n = 46) for 6 months. In the open-label extension (OLE) period, 93 patients received givosiran 2.5 or 1.25 mg/kg for 6 months or more before transitioning to 2.5 mg/kg. Endpoints were exploratory unless otherwise noted. RESULTS: During givosiran treatment, the median annualized attack rate (AAR) was 0.4. Through Month 36, annualized days of hemin use remained low in the continuous givosiran group (median, 0.0 to 0.4) and decreased in the placebo crossover group (16.2 to 0.4). At end of OLE, in the continuous givosiran and placebo crossover groups, 86% and 92%, respectively, had 0 attacks. AAR was lower than historical AAR in 98% and 100%, respectively (post hoc analysis), and there were 0 days of hemin use in 88% and 90%, respectively. The 12-item short-form health survey physical and mental component summary scores increased by 8.6 and 8.1, respectively (continuous givosiran) and 9.4 and 3.2, respectively (placebo crossover). EQ-5D health-related questionnaire scores increased by 18.9 (continuous givosiran) and 9.9 (placebo crossover). Lower urinary delta-aminolevulinic acid and porphobilinogen levels were sustained. Safety findings demonstrated a continued positive risk/benefit profile for givosiran. CONCLUSIONS: Long-term monthly givosiran treatment provides sustained and continued improvement in clinical manifestations of AHP. GOV IDENTIFIER: NCT03338816. EUDRACT NUMBER: 2017-002432-17. IMPACT AND IMPLICATIONS: Acute hepatic porphyria (AHP) is a group of rare, chronic, multisystem disorders associated with overproduction and accumulation of neurotoxic heme intermediates (delta-aminolevulinic acid and porphobilinogen), sometimes resulting in recurrent acute attacks and long-term complications. Givosiran, a small-interfering RNA that prevents accumulation of delta-aminolevulinic acid and porphobilinogen, is approved for the treatment of AHP. These final 36-month results of ENVISION, a phase III study of givosiran in patients with AHP and recurrent attacks, show that long-term monthly treatment with givosiran leads to continuous and sustained reductions in annualized attack rate and use of hemin over time, as well as improved quality of life, with an acceptable safety profile. These results are important for physicians, patients, families, and caregivers who are grappling with this debilitating and potentially life-threatening disease with few effective and tolerable treatment options.

2.
J Inherit Metab Dis ; 45(6): 1163-1174, 2022 11.
Article in English | MEDLINE | ID: mdl-36069414

ABSTRACT

One-year data from EXPLORE Part A showed high disease burden and impaired quality of life (QOL) in patients with acute hepatic porphyria (AHP) with recurrent attacks. We report baseline data of patients who enrolled in EXPLORE Part B for up to an additional 3 years of follow-up. EXPLORE B is a long-term, prospective study evaluating disease activity, pain intensity, and QOL in patients with AHP with ≥1 attack in the 12 months before enrollment or receiving hemin or gonadotropin-releasing hormone prophylaxis. Data were evaluated in patients with more (≥3 attacks or on prophylaxis treatment) or fewer (<3 attacks and no prophylaxis treatment) attacks. Patients in the total population (N = 136), and more (n = 110) and fewer (n = 26) attack subgroups, reported a median (range) of 3 (0-52), 4 (0-52), and 1 (0-2) acute attacks, respectively, in the 12 months prior to the baseline visit. Pain, mood/sleep, digestive/bladder, and nervous system symptoms were each experienced by ≥80% of patients; most received hemin during attacks. Almost three-quarters of patients reported chronic symptoms between attacks, including 85% of patients with fewer attacks. Pain intensity was comparable among both attack subgroups; most patients required pain medication. All groups had diminished QOL on the EuroQol visual analog scale and the European Organisation for Research and Treatment of Cancer Quality-of-life Questionnaire Core 30 versus population norms. Patients with AHP with recurrent attacks, even those having fewer attacks, experience a high disease burden, as evidenced by chronic symptoms between attacks and impaired QOL.


Subject(s)
Porphyria, Acute Intermittent , Porphyrias, Hepatic , Humans , Prospective Studies , Quality of Life , Hemin/therapeutic use , Porphyrias, Hepatic/drug therapy , Pain , Porphyria, Acute Intermittent/complications , Porphyria, Acute Intermittent/drug therapy
3.
Int J Mol Sci ; 23(15)2022 07 27.
Article in English | MEDLINE | ID: mdl-35955418

ABSTRACT

Spinal muscular atrophy (SMA) is a severe neuromuscular disorder caused by biallelic loss or pathogenic variants in the SMN1 gene. Copy number and modifier intragenic variants in SMN2, an almost identical paralog gene of SMN1, are known to influence the amount of complete SMN proteins. Therefore, SMN2 is considered the main phenotypic modifier of SMA, although genotype−phenotype correlation is not absolute. We present eleven unrelated SMA patients with milder phenotypes carrying the c.859G>C-positive modifier variant in SMN2. All were studied by a specific NGS method to allow a deep characterization of the entire SMN region. Analysis of two homozygous cases for the variant allowed us to identify a specific haplotype, Smn2-859C.1, in association with c.859G>C. Two other cases with the c.859G>C variant in their two SMN2 copies showed a second haplotype, Smn2-859C.2, in cis with Smn2-859C.1, assembling a more complex allele. We also identified a previously unreported variant in intron 2a exclusively linked to the Smn2-859C.1 haplotype (c.154-1141G>A), further suggesting that this region has been ancestrally conserved. The deep molecular characterization of SMN2 in our cohort highlights the importance of testing c.859G>C, as well as accurately assessing the SMN2 region in SMA patients to gain insight into the complex genotype−phenotype correlations and improve prognostic outcomes.


Subject(s)
Muscular Atrophy, Spinal , Genetic Association Studies , Homozygote , Humans , Introns , Muscular Atrophy, Spinal/genetics , Mutation , Phenotype , Survival of Motor Neuron 1 Protein/genetics , Survival of Motor Neuron 2 Protein/genetics
4.
Hum Mutat ; 41(1): 265-276, 2020 01.
Article in English | MEDLINE | ID: mdl-31549748

ABSTRACT

Postaxial polydactyly (PAP) is a frequent limb malformation consisting in the duplication of the fifth digit of the hand or foot. Morphologically, this condition is divided into type A and B, with PAP-B corresponding to a more rudimentary extra-digit. Recently, biallelic truncating variants in the transcription factor GLI1 were reported to be associated with a recessive disorder, which in addition to PAP-A, may include syndromic features. Moreover, two heterozygous subjects carrying only one inactive copy of GLI1 were also identified with PAP. Herein, we aimed to determine the level of involvement of GLI1 in isolated PAP, a condition previously established to be autosomal dominantly inherited with incomplete penetrance. We analyzed the coding region of GLI1 in 95 independent probands with nonsyndromic PAP and found 11.57% of these subjects with single heterozygous pathogenic variants in this gene. The detected variants lead to premature termination codons or result in amino acid changes in the DNA-binding domain of GLI1 that diminish its transactivation activity. Family segregation analysis of these variants was consistent with dominant inheritance with incomplete penetrance. We conclude that heterozygous changes in GLI1 underlie a significant proportion of sporadic or familial cases of isolated PAP-A/B.


Subject(s)
Fingers/abnormalities , Genetic Association Studies , Genetic Predisposition to Disease , Genetic Variation , Heterozygote , Polydactyly/diagnosis , Polydactyly/genetics , Toes/abnormalities , Zinc Finger Protein GLI1/genetics , Alleles , Amino Acid Substitution , Female , Fibroblasts , Gene Expression , Genes, Dominant , Genes, Reporter , Genetic Association Studies/methods , Genotype , Humans , Infant , Infant, Newborn , Male , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA
5.
Am J Hum Genet ; 98(2): 363-72, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26833329

ABSTRACT

Genetic studies of intellectual disability and identification of monogenic causes of obesity in humans have made immense contribution toward the understanding of the brain and control of body mass. The leptin > melanocortin > SIM1 pathway is dysregulated in multiple monogenic human obesity syndromes but its downstream targets are still unknown. In ten individuals from six families, with overlapping 6q16.1 deletions, we describe a disorder of variable developmental delay, intellectual disability, and susceptibility to obesity and hyperphagia. The 6q16.1 deletions segregated with the phenotype in multiplex families and were shown to be de novo in four families, and there was dramatic phenotypic overlap among affected individuals who were independently ascertained without bias from clinical features. Analysis of the deletions revealed a ∼350 kb critical region on chromosome 6q16.1 that encompasses a gene for proneuronal transcription factor POU3F2, which is important for hypothalamic development and function. Using morpholino and mutant zebrafish models, we show that POU3F2 lies downstream of SIM1 and controls oxytocin expression in the hypothalamic neuroendocrine preoptic area. We show that this finding is consistent with the expression patterns of POU3F2 and related genes in the human brain. Our work helps to further delineate the neuro-endocrine control of energy balance/body mass and demonstrates that this molecular pathway is conserved across multiple species.


Subject(s)
Homeodomain Proteins/genetics , Intellectual Disability/genetics , Obesity/genetics , POU Domain Factors/genetics , Sequence Deletion , Adolescent , Adult , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Mass Index , Cell Line , Child , Child, Preschool , Chromosomes, Human, Pair 6/genetics , Disease Models, Animal , Energy Metabolism , Female , Homeodomain Proteins/metabolism , Humans , Hypothalamus/metabolism , Male , Middle Aged , Oxytocin/metabolism , POU Domain Factors/metabolism , Pedigree , Phenotype , Repressor Proteins/genetics , Repressor Proteins/metabolism , Young Adult , Zebrafish
6.
Pediatr Res ; 83(1-1): 119-127, 2018 01.
Article in English | MEDLINE | ID: mdl-28820871

ABSTRACT

BackgroundFetal alcohol syndrome (FAS) is caused by maternal alcohol consumption during pregnancy; although additional factors might be involved, as development and severity are not directly related to alcohol intake. The abnormal glycosylation caused by alcohol might play a role in FAS according to the clinical similarities shared with congenital disorders of glycosylation (CDG). Thus, mutations underlying CDG, affecting genes involved in glycosylation, could also be involved in FAS.MethodsA panel of 74 genes involved in N-glycosylation was sequenced in 25 FAS patients and 20 controls with prenatal alcohol exposure. Transferrin glycoforms were evaluated by HPLC.ResultsRare (minor allele frequency<0.009) missense/splice site variants were more frequent in FAS than controls (84% vs. 50%; P=0.034, odds ratio: 5.25, 95% confidence interval: 1.3-20.9). Remarkably, three patients, but no controls, carried variants with functional effects identified in CDG patients. Moreover, the patient with the most severe clinical phenotype was the only one carrying two variants with functional effects. Family studies support that the combination of a genetic defect and alcohol consumption during pregnancy might have a role in FAS development.ConclusionsOur study supports that the rare variants of genes involved in N-glycosylation could play a role in the development and severity of FAS under prenatal alcohol exposure.


Subject(s)
Congenital Disorders of Glycosylation/genetics , Fetal Alcohol Spectrum Disorders/genetics , Genetic Predisposition to Disease , Mutation , Adolescent , Adult , Alleles , Case-Control Studies , Child , Child, Preschool , Chromatography, High Pressure Liquid , Congenital Disorders of Glycosylation/complications , Female , Genetic Variation , Glycosylation , Humans , Infant , Male , Maternal Exposure , Middle Aged , Mothers , Odds Ratio , Pregnancy , Retrospective Studies , Sequence Analysis, DNA , Transferrin/chemistry
7.
J Inherit Metab Dis ; 41(6): 1225-1233, 2018 11.
Article in English | MEDLINE | ID: mdl-29725868

ABSTRACT

INTRODUCTION: Long-term outcome data provide important insights into the clinical utility of enzyme replacement therapies. Such data are presented for velmanase alfa in the treatment of alpha-mannosidosis (AM). METHODS: Patient data (n = 33; 14 adults, 19 paediatric) from the clinical development programme for velmanase alfa were integrated in this prospectively-designed analysis of long-term efficacy and safety. Patients who participated in the phase I/II or phase III trials and were continuing to receive treatment after completion of the trials were invited to participate in a comprehensive evaluation visit to assess long-term outcomes. Primary endpoints were changes in serum oligosaccharide and the 3-minute stair climb test (3MSCT). RESULTS: Mean (SD) treatment exposure was 29.3 (15.2) months. Serum oligosaccharide levels were significantly reduced in the overall population at 12 months (mean change: -72.7%, P < 0.001) and remained statistically significant at last observation (-62.8%, P < 0.001). A mean improvement of +9.3% in 3MSCT was observed at 12 months (P = 0.013), which also remained statistically significant at last observation (+13.8%, P = 0.004), with a more pronounced improvement detected in the paediatric subgroup. No treatment-emergent adverse events were reported leading to permanent treatment discontinuation. CONCLUSIONS: Patients treated with velmanase alfa experienced improvements in biochemical and functional measures that were maintained for up to 4 years. Long term follow-up is important and further supports the use of velmanase alfa as an effective and well-tolerated treatment for AM. Based on the currently available data set, no baseline characteristic can be predictive of treatment outcome. Early treatment during paediatric age showed better outcome in functional endpoints.


Subject(s)
Enzyme Replacement Therapy , alpha-Mannosidase/therapeutic use , alpha-Mannosidosis/therapy , Activities of Daily Living , Adolescent , Adult , Child , Europe , Female , Follow-Up Studies , Humans , Male , Quality of Life , Recombinant Proteins/adverse effects , Recombinant Proteins/therapeutic use , Severity of Illness Index , Treatment Outcome , Young Adult , alpha-Mannosidase/adverse effects , alpha-Mannosidosis/enzymology
8.
Hum Mol Genet ; 23(11): 2888-900, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24403048

ABSTRACT

Cornelia de Lange syndrome (CdLS) is a multisystem genetic disorder with distinct facies, growth failure, intellectual disability, distal limb anomalies, gastrointestinal and neurological disease. Mutations in NIPBL, encoding a cohesin regulatory protein, account for >80% of cases with typical facies. Mutations in the core cohesin complex proteins, encoded by the SMC1A, SMC3 and RAD21 genes, together account for ∼5% of subjects, often with atypical CdLS features. Recently, we identified mutations in the X-linked gene HDAC8 as the cause of a small number of CdLS cases. Here, we report a cohort of 38 individuals with an emerging spectrum of features caused by HDAC8 mutations. For several individuals, the diagnosis of CdLS was not considered prior to genomic testing. Most mutations identified are missense and de novo. Many cases are heterozygous females, each with marked skewing of X-inactivation in peripheral blood DNA. We also identified eight hemizygous males who are more severely affected. The craniofacial appearance caused by HDAC8 mutations overlaps that of typical CdLS but often displays delayed anterior fontanelle closure, ocular hypertelorism, hooding of the eyelids, a broader nose and dental anomalies, which may be useful discriminating features. HDAC8 encodes the lysine deacetylase for the cohesin subunit SMC3 and analysis of the functional consequences of the missense mutations indicates that all cause a loss of enzymatic function. These data demonstrate that loss-of-function mutations in HDAC8 cause a range of overlapping human developmental phenotypes, including a phenotypically distinct subgroup of CdLS.


Subject(s)
Cranial Fontanelles/abnormalities , De Lange Syndrome/enzymology , Eye Abnormalities/enzymology , Genes, X-Linked , Histone Deacetylases/genetics , Hypertelorism/enzymology , Repressor Proteins/genetics , Amino Acid Sequence , Child , Child, Preschool , Cohort Studies , Cranial Fontanelles/enzymology , De Lange Syndrome/genetics , Eye Abnormalities/genetics , Female , Histone Deacetylases/chemistry , Histone Deacetylases/metabolism , Humans , Hypertelorism/genetics , Infant , Male , Molecular Sequence Data , Mutation, Missense , Phenotype , Repressor Proteins/chemistry , Repressor Proteins/metabolism , Sequence Alignment
9.
Am J Med Genet A ; 170A(1): 210-6, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26374189

ABSTRACT

Primordial dwarfism encompasses rare conditions characterized by severe intrauterine growth retardation and growth deficiency throughout life. Recently, three POC1A mutations have been reported in six families with the primordial dwarfism, SOFT syndrome (Short stature, Onychodysplasia, Facial dysmorphism, and hypoTrichosis). Using a custom-designed Next-generation sequencing skeletal dysplasia panel, we have identified two novel homozygous POC1A mutations in two individuals with primordial dwarfism. The severe growth retardation and the facial profiles are strikingly similar between our patients and those described previously. However, one of our patients was diagnosed with severe foramen magnum stenosis and subglottic tracheal stenosis, malformations not previously associated with this syndrome. Our findings confirm that POC1A mutations cause SOFT syndrome and that mutations in this gene should be considered in patients with severe pre- and postnatal short stature, symmetric shortening of long bones, triangular facies, sparse hair and short, thickened distal phalanges.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Dwarfism/genetics , Hypotrichosis/genetics , Muscular Atrophy/genetics , Nail Diseases/genetics , Osteochondrodysplasias/genetics , Proteins/genetics , Adolescent , Cell Cycle Proteins , Cytoskeletal Proteins , Humans , Infant , Male , Nail Diseases/congenital , Thorax/abnormalities
10.
Neurobiol Dis ; 83: 44-53, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26282322

ABSTRACT

Celia's Encephalopathy (MIM #615924) is a recently discovered fatal neurodegenerative syndrome associated with a new BSCL2 mutation (c.985C>T) that results in an aberrant isoform of seipin (Celia seipin). This mutation is lethal in both homozygosity and compounded heterozygosity with a lipodystrophic BSCL2 mutation, resulting in a progressive encephalopathy with fatal outcomes at ages 6-8. Strikingly, heterozygous carriers are asymptomatic, conflicting with the gain of toxic function attributed to this mutation. Here we report new key insights about the molecular pathogenic mechanism of this new syndrome. Intranuclear inclusions containing mutant seipin were found in brain tissue from a homozygous patient suggesting a pathogenic mechanism similar to other neurodegenerative diseases featuring brain accumulation of aggregated, misfolded proteins. Sucrose gradient distribution showed that mutant seipin forms much larger aggregates as compared with wild type (wt) seipin, indicating an impaired oligomerization. On the other hand, the interaction between wt and Celia seipin confirmed by coimmunoprecipitation (CoIP) assays, together with the identification of mixed oligomers in sucrose gradient fractionation experiments can explain the lack of symptoms in heterozygous carriers. We propose that the increased aggregation and subsequent impaired oligomerization of Celia seipin leads to cell death. In heterozygous carriers, wt seipin might prevent the damage caused by mutant seipin through its sequestration into harmless mixed oligomers.


Subject(s)
Brain Diseases/genetics , Brain Diseases/metabolism , Brain/metabolism , GTP-Binding Protein gamma Subunits/genetics , Mutation , Proteostasis Deficiencies/genetics , Proteostasis Deficiencies/metabolism , Adipocytes/metabolism , Adult , Aged , Brain/pathology , Brain Diseases/pathology , Child , Endoplasmic Reticulum/metabolism , Female , Heterozygote , Humans , Male , Protein Aggregates , Proteomics , Proteostasis Deficiencies/pathology
11.
Clin Immunol ; 161(2): 355-65, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26499378

ABSTRACT

Schimke immuno-osseous dysplasia (SIOD) is an autosomal recessive, fatal childhood disorder associated with skeletal dysplasia, renal dysfunction, and T-cell immunodeficiency. This disease is linked to biallelic loss-of-function mutations of the SMARCAL1 gene. Although recurrent infection, due to T-cell deficiency, is a leading cause of morbidity and mortality, the etiology of the T-cell immunodeficiency is unclear. Here, we demonstrate that the T cells of SIOD patients have undetectable levels of protein and mRNA for the IL-7 receptor alpha chain (IL7Rα) and are unresponsive to stimulation with IL-7, indicating a loss of functional receptor. No pathogenic mutations were detected in the exons of IL7R in these patients; however, CpG sites in the IL7R promoter were hypermethylated in SIOD T cells. We propose therefore that the lack of IL7Rα expression, associated with hypermethylation of the IL7R promoter, in T cells and possibly their earlier progenitors, restricts T-cell development in SIOD patients.


Subject(s)
Arteriosclerosis/genetics , Immunologic Deficiency Syndromes/genetics , Nephrotic Syndrome/genetics , Osteochondrodysplasias/genetics , Pulmonary Embolism/genetics , Receptors, Interleukin-7/genetics , T-Lymphocytes/metabolism , Adolescent , Adult , Arteriosclerosis/metabolism , Arteriosclerosis/pathology , Cells, Cultured , Child , Child, Preschool , DNA Helicases/genetics , DNA Methylation , Flow Cytometry , Gene Expression , Humans , Immunohistochemistry , Immunologic Deficiency Syndromes/metabolism , Immunologic Deficiency Syndromes/pathology , Interleukin-17/pharmacology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mutation , Nephrotic Syndrome/metabolism , Nephrotic Syndrome/pathology , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Primary Immunodeficiency Diseases , Promoter Regions, Genetic/genetics , Pulmonary Embolism/metabolism , Pulmonary Embolism/pathology , Receptors, Interleukin-7/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Sequence Analysis, DNA , Young Adult
12.
Hum Genet ; 134(6): 553-68, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25724810

ABSTRACT

Coffin-Siris syndrome (CSS) and Nicolaides-Baraitser syndrome (NCBRS) are rare intellectual disability/congenital malformation syndromes that represent distinct entities but show considerable clinical overlap. They are caused by mutations in genes encoding members of the BRG1- and BRM-associated factor (BAF) complex. However, there are a number of patients with the clinical diagnosis of CSS or NCBRS in whom the causative mutation has not been identified. In this study, we performed trio-based whole-exome sequencing (WES) in ten previously described but unsolved individuals with the tentative diagnosis of CSS or NCBRS and found causative mutations in nine out of ten individuals. Interestingly, our WES analysis disclosed overlapping differential diagnoses including Wiedemann-Steiner, Kabuki, and Adams-Oliver syndromes. In addition, most likely causative de novo mutations were identified in GRIN2A and SHANK3. Moreover, trio-based WES detected SMARCA2 and SMARCA4 deletions, which had not been annotated in a previous Haloplex target enrichment and next-generation sequencing of known CSS/NCBRS genes emphasizing the advantages of WES as a diagnostic tool. In summary, we discuss the phenotypic and diagnostic challenges in clinical genetics, establish important differential diagnoses, and emphasize the cardinal features and the broad clinical spectrum of BAF complex disorders and other disorders caused by mutations in epigenetic landscapers.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Exome , Face/abnormalities , Foot Deformities, Congenital/diagnosis , Foot Deformities, Congenital/genetics , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/genetics , Hypotrichosis/diagnosis , Hypotrichosis/genetics , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Micrognathism/diagnosis , Micrognathism/genetics , Mutation , Neck/abnormalities , Adult , Aged, 80 and over , Child , DNA Helicases/genetics , Diagnosis, Differential , Facies , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Male , Middle Aged , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Receptors, N-Methyl-D-Aspartate/genetics , Transcription Factors/genetics
13.
Am J Med Genet A ; 167A(4): 786-90, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25655674

ABSTRACT

The 10q26 deletion syndrome is a clinically heterogeneous disorder. The most common phenotypic characteristics include pre- and/or postnatal growth retardation, microcephaly, developmental delay/intellectual disability and a facial appearance consisting of a broad nasal bridge with a prominent nose, low-set malformed ears, strabismus, and a thin vermilion of the upper lip. In addition, limb and cardiac anomalies as well as urogenital anomalies are occasionally observed. In this report, we describe three unrelated females with 10q26 terminal deletions who shared clinical features of the syndrome, including urogenital defects. Cytogenetic studies showed an apparently de novo isolated deletion of the long arm of chromosome 10, with breakpoints in 10q26.1, and subsequent oligo array-CGH analysis confirmed the terminal location and defined the size of the overlapping deletions as ∼ 13.46, ∼ 9.31 and ∼ 9.17 Mb. We compared the phenotypic characteristics of the present patients with others reported to have isolated deletions and we suggest that small 10q26.2 terminal deletions may be associated with growth retardation, developmental delay/intellectual disability, craniofacial features and external genital anomalies whereas longer terminal deletions affecting the 10q26.12 and/or 10q26.13 regions may be responsible for renal/urinary tract anomalies. We propose that the haploinsufficiency of one or several genes located in the 10q26.12-q26.13 region may contribute to the renal or urinary tract pathogenesis and we highlight the importance of FGFR2 and probably of CTBP2 as candidate genes.


Subject(s)
Learning Disabilities/diagnosis , Urogenital Abnormalities/diagnosis , Adolescent , Child , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 10/genetics , Comparative Genomic Hybridization , Facies , Female , Genetic Association Studies , Humans , Learning Disabilities/genetics , Urogenital Abnormalities/genetics
14.
Genomics ; 103(4): 288-91, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24607569

ABSTRACT

Complex chromosome rearrangements (CCRs) are extremely rare in humans. About 20% of the apparently balanced CCRs have an abnormal phenotype and the degree of severity correlates with a higher number of breakpoints. Several studies using FISH and microarray technologies have shown that deletions in the breakpoints are common although duplications, insertions and inversions have also been detected. We report a patient with two simultaneous reciprocal translocations, t(3;4) and t(2;14;18), involving five chromosomes and six breakpoints. He showed dysmorphic features, preaxial polydactyly in the left hand, brachydactyly, postnatal growth retardation and developmental delay. The rearrangement was characterized by FISH analysis which detected an interstitial segment from chromosome 14 inserted in the derivative chromosome 2, and by whole genome array which revealed an interstitial deletion of approximately 4.5 Mb at the breakpoint site on chromosome 3. To our knowledge this microdeletion has not been previously reported and includes ~12 genes. The haploinsufficiency of one or several of these genes is likely to have contributed to the clinical phenotype of the patient.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 3 , Comparative Genomic Hybridization/methods , Child, Preschool , Chromosome Deletion , Chromosomes, Human, Pair 14 , Chromosomes, Human, Pair 2 , Face/abnormalities , Humans , In Situ Hybridization, Fluorescence/methods , Male , Polydactyly/genetics , Translocation, Genetic
15.
Hum Mutat ; 35(12): 1436-41, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25196541

ABSTRACT

Overgrowth syndromes (OGS) are a group of disorders in which all parameters of growth and physical development are above the mean for age and sex. We evaluated a series of 270 families from the Spanish Overgrowth Syndrome Registry with no known OGS. We identified one de novo deletion and three missense mutations in RNF125 in six patients from four families with overgrowth, macrocephaly, intellectual disability, mild hydrocephaly, hypoglycemia, and inflammatory diseases resembling Sjögren syndrome. RNF125 encodes an E3 ubiquitin ligase and is a novel gene of OGS. Our studies of the RNF125 pathway point to upregulation of RIG-I-IPS1-MDA5 and/or disruption of the PI3K-AKT and interferon signaling pathways as the putative final effectors.


Subject(s)
Growth Disorders/genetics , Mutation , Ubiquitin-Protein Ligases/genetics , Female , Growth Disorders/epidemiology , Humans , Male , Pedigree , Registries , Spain/epidemiology , Syndrome
16.
Am J Med Genet A ; 164A(5): 1136-42, 2014 May.
Article in English | MEDLINE | ID: mdl-24478195

ABSTRACT

The IFITM5 gene has recently been found to be mutated in patients with autosomal dominant osteogenesis imperfecta (OI) type V. This form of OI is characterized by distinctive clinical manifestations, including hyperplastic callus formation at the site of fractures, calcification of the interosseous membrane of the forearm, and dislocation of the head of the radius. Notably, in spite of the fact that a considerable number of patients with IFITM5 mutations have been identified, to date all of them have been shown to have the same heterozygous mutation (c.-14C>T). Herein, we describe one patient with a de novo c.119C>T heterozygous mutation in IFITM5, which predicts p.Ser40Leu, and another with the recurrent c.-14C>T transition that was also apparently de novo. While the patient with the p.Ser40Leu mutation had none of the typical signs of OI type V and was diagnosed with limb shortening at prenatal stages, the patient with the c.-14C>T mutation developed hyperplastic calluses and had calcification of the forearm interosseous membrane. This study challenges the lack of allelic and clinical heterogeneity in IFITM5 mutations.


Subject(s)
Membrane Proteins/genetics , Mutation , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/genetics , Phenotype , Adult , Amino Acid Sequence , Amino Acid Substitution , Bone and Bones/diagnostic imaging , Bone and Bones/pathology , DNA Mutational Analysis , Female , Genotype , Humans , Infant , Radiography
17.
J Med Genet ; 50(6): 401-9, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23564749

ABSTRACT

BACKGROUND: Seipin/BSCL2 mutations can cause type 2 congenital generalised lipodystrophy (BSCL) or dominant motor neurone diseases. Type 2 BSCL is frequently associated with some degree of intellectual impairment, but not to fatal neurodegeneration. In order to unveil the aetiology and pathogenetic mechanisms of a new neurodegenerative syndrome associated with a novel BSCL2 mutation, six children, four of them showing the BSCL features, were studied. METHODS: Mutational and splicing analyses of BSCL2 were performed. The brain of two of these children was examined postmortem. Relative expression of BSCL2 transcripts was analysed by real-time reverse transcription-polymerase chain reaction (RT-PCR) in different tissues of the index case and controls. Overexpressed mutated seipin in HeLa cells was analysed by immunofluorescence and western blotting. RESULTS: Two patients carried a novel homozygous c.985C>T mutation, which appeared in the other four patients in compound heterozygosity. Splicing analysis showed that the c.985C>T mutation causes an aberrant splicing site leading to skipping of exon 7. Expression of exon 7-skipping transcripts was very high with respect to that of the non-skipped transcripts in all the analysed tissues of the index case. Neuropathological studies showed severe neurone loss, astrogliosis and intranuclear ubiquitin(+) aggregates in neurones from multiple cortical regions and in the caudate nucleus. CONCLUSIONS: Our results suggest that exon 7 skipping in the BSCL2 gene due to the c.985C>T mutation is responsible for a novel early onset, fatal neurodegenerative syndrome involving cerebral cortex and basal ganglia.


Subject(s)
GTP-Binding Protein gamma Subunits/genetics , Lipodystrophy, Congenital Generalized/genetics , Mutation , Child , Exons/genetics , Fatal Outcome , Female , GTP-Binding Protein gamma Subunits/chemistry , GTP-Binding Protein gamma Subunits/metabolism , Genotype , HeLa Cells , Humans , Lipodystrophy, Congenital Generalized/pathology , Lipodystrophy, Congenital Generalized/physiopathology , Male , Phenotype , RNA Splicing , Reverse Transcriptase Polymerase Chain Reaction
18.
Genes (Basel) ; 15(6)2024 May 26.
Article in English | MEDLINE | ID: mdl-38927623

ABSTRACT

HELIX syndrome (Hypohidrosis-Electrolyte disturbances-hypoLacrimia-Ichthyosis-Xerostomia) (MIM#617671) (ORPHA:528105), described in 2017, is due to an abnormal claudin 10 b protein, secondary to pathogenic CLDN10 variants. So far, only ten families have been described. We aim to describe the phenotype in the first Spanish family identified, highlight the skin anomalies as an important clue, and expand the genotypic spectrum. Two adult brothers from consanguineous parents with suspected ectodermal dysplasia (ED) since early childhood were re-evaluated. A comprehensive phenotypic exam and an aCGH + SNP4 × 180 K microarray followed by Sanger sequencing of the CLDN10 gene were performed. They presented hypohidrosis, xerosis, mild ichthyosis, plantar keratosis, palm hyperlinearity, alacrima, and xerostomia. In adulthood, they also developed a salt-losing nephropathy with hypokalemia and hypermagnesemia. The molecular study in both patients revealed a novel pathogenic homozygous deletion of 8 nucleotides in exon 2 of the CLDN10 gene [CLDN10 (NM_0006984.4): c.322_329delGGCTCCGA, p.Gly108fs*] leading to a premature truncation of the protein. Both parents were heterozygous carriers. Hypohidrosis, ichthyosis, and plantar keratosis associated with alacrima and xerostomia should raise suspicion for HELIX syndrome, which also includes nephropathy and electrolyte disturbances in adults. Given the potential for ED misdiagnosis in infancy, it is important to include the CLDN10 gene in a specific genodermatosis next-generation sequencing (NGS) panel to provide early diagnosis, accurate management, and genetic counseling.


Subject(s)
Claudins , Humans , Male , Claudins/genetics , Adult , Ichthyosis/genetics , Ichthyosis/pathology , Hypohidrosis/genetics , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Pedigree , Phenotype
19.
Adv Ther ; 41(7): 2545-2558, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38748332

ABSTRACT

Achondroplasia is a lifelong condition requiring lifelong management. There is consensus that infants and children with achondroplasia should be managed by a multidisciplinary team experienced in the condition. However, many people are lost to follow-up after the transition from paediatric to adult care, and there is no standardised approach for management in adults, despite the recent availability of international consensus guidelines. To address this, the European Achondroplasia Forum has developed a patient-held checklist to support adults with achondroplasia in managing their health. The checklist highlights key symptoms of spinal stenosis and obstructive sleep apnoea, both among the most frequent and potentially severe medical complications in adults with achondroplasia. The checklist acts as a framework to support individuals and their primary care provider in completing a routine review. General advice on issues such as blood pressure, pain, hearing, weight, adaptive aids, and psychosocial aspects are also included. The checklist provides key symptoms to be aware of, in addition to action points so that people can approach their primary care provider and be directed to the appropriate specialist, if needed. Additionally, the European Achondroplasia Forum offers some ideas on implementing the checklist during the transition from paediatric to adult care, thus ensuring the existing multidisciplinary team model in place during childhood can support in engaging individuals and empowering them to take responsibility for their own care as they move into adulthood.


Subject(s)
Achondroplasia , Adult , Humans , Achondroplasia/complications , Achondroplasia/therapy , Checklist , Europe , Sleep Apnea, Obstructive/therapy , Spinal Stenosis/therapy , Spinal Stenosis/complications , Transition to Adult Care
20.
Med Clin (Barc) ; 162(3): 103-111, 2024 02 09.
Article in English, Spanish | MEDLINE | ID: mdl-37838536

ABSTRACT

BACKGROUND: Acute hepatic porphyria (AHP) comprises a group of rare genetic diseases characterized by neurovisceral crises that are manifested by abdominal pain and neurological and/or psychological symptoms that interfere with the ability to lead a normal life. Our objective was to determine the burden of the disease in one year and the health-related quality of life (HRQoL) in patients with AHP. RESULTS: 28 patients were analyzed. The mean age was 36.6±10.2 years, 89.3% were women, and the average number of crises was 1.9±1.5. The average annual cost per patient was €38,255.40. 80.2% of the costs was direct medical costs, 17.5% was associated with loss of productivity and 2.3% was direct non-medical costs. 85.9% of the total cost corresponded to the crises. The intercrisis period accounted for the remaining 14.1%. The global index of the EQ-5D-5L (HRQoL) was 0.75±0.24. The dimensions of pain/discomfort, anxiety/depression and daily activities were the most affected. Leisure, travel/vacations and household activities were the most affected daily activities. 53.6% of patients required a caregiver due to AHP. 92.9% did not present overload and 7.1% presented extreme overload. CONCLUSIONS: Patients with AHP are associated with a high economic impact and an affected HRQoL in the pain/discomfort dimension, with a negative impact on the performance of daily activities and a risk of psychiatric diseases.


Subject(s)
Porphyrias, Hepatic , Quality of Life , Humans , Female , Adult , Middle Aged , Male , Depression/etiology , Cost of Illness , Pain/etiology
SELECTION OF CITATIONS
SEARCH DETAIL