Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 57
Filter
1.
Plant Biotechnol J ; 21(1): 202-218, 2023 01.
Article in English | MEDLINE | ID: mdl-36196761

ABSTRACT

Temperate japonica/geng (GJ) rice yield has significantly improved due to intensive breeding efforts, dramatically enhancing global food security. However, little is known about the underlying genomic structural variations (SVs) responsible for this improvement. We compared 58 long-read assemblies comprising cultivated and wild rice species in the present study, revealing 156 319 SVs. The phylogenomic analysis based on the SV dataset detected the putatively selected region of GJ sub-populations. A significant portion of the detected SVs overlapped with genic regions were found to influence the expression of involved genes inside GJ assemblies. Integrating the SVs and causal genetic variants underlying agronomic traits into the analysis enables the precise identification of breeding signatures resulting from complex breeding histories aimed at stress tolerance, yield potential and quality improvement. Further, the results demonstrated genomic and genetic evidence that the SV in the promoter of LTG1 is accounting for chilling sensitivity, and the increased copy numbers of GNP1 were associated with positive effects on grain number. In summary, the current study provides genomic resources for retracing the properties of SVs-shaped agronomic traits during previous breeding procedures, which will assist future genetic, genomic and breeding research on rice.


Subject(s)
Oryza , Oryza/genetics , Plant Breeding , Genomics/methods , Phenotype , Edible Grain
2.
Int J Mol Sci ; 24(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37762345

ABSTRACT

MIKC-type MADS-box genes, also known as type II genes, play a crucial role in regulating the formation of floral organs and reproductive development in plants. However, the genome-wide identification and characterization of type II genes as well as a transcriptomic survey of their potential roles in Carica papaya remain unresolved. Here, we identified and characterized 24 type II genes in the C. papaya genome, and investigated their evolutional scenario and potential roles with a widespread expression profile. The type II genes were divided into thirteen subclades, and gene loss events likely occurred in papaya, as evidenced by the contracted member size of most subclades. Gene duplication mainly contributed to MIKC-type gene formation in papaya, and the duplicated gene pairs displayed prevalent expression divergence, implying the evolutionary significance of gene duplication in shaping the diversity of type II genes in papaya. A large-scale transcriptome analysis of 152 samples indicated that different subclasses of these genes showed distinct expression patterns in various tissues, biotic stress response, and abiotic stress response, reflecting their divergent functions. The hub-network of male and female flowers and qRT-PCR suggested that TT16-3 and AGL8 participated in male flower development and seed germination. Overall, this study provides valuable insights into the evolution and functions of MIKC-type genes in C. papaya.


Subject(s)
Carica , Transcriptome , Carica/genetics , Gene Expression Profiling , Genomics , Flowers/genetics
3.
J Integr Plant Biol ; 64(10): 1856-1859, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35962717

ABSTRACT

A CRISPR/LbCas12a-based nucleic acid detection method that uses crude leaf extracts as samples and is rapid (≤40 min for a full run) and highly sensitive (0.01%) can be used to monitor genetically modified organisms in the field.


Subject(s)
CRISPR-Cas Systems , Nucleic Acids , CRISPR-Cas Systems/genetics , Crops, Agricultural/genetics , Plants, Genetically Modified/genetics , Plant Extracts , Nucleic Acid Amplification Techniques/methods
4.
J Med Virol ; 93(12): 6714-6721, 2021 12.
Article in English | MEDLINE | ID: mdl-34347302

ABSTRACT

BACKGROUND: Patients with severe COVID-19 are more likely to develop adverse outcomes with a huge medical burden. We aimed to investigate whether a shorter symptom onset to admission time (SOAT) could improve outcomes of COVID-19 patients. METHODS: A single-center retrospective study combined with a meta-analysis was performed. The meta-analysis identified studies published between 1 December 2019 and 15 April 2020. Additionally, clinical data of COVID-19 patients diagnosed between January 20 and February 20, 2020, at the First Affiliated Hospital of the University of Science and Technology of China were retrospectively analyzed. SOAT and severity of illness in patients with COVID-19 were used as effect measures. The random-effects model was used to analyze the heterogeneity across studies. Propensity score matching was applied to adjust for confounding factors in the retrospective study. Categorical data were compared using Fisher's exact test. We compared the differences in laboratory characteristic varied times using a two-way nonparametric, Scheirer-Ray-Hare test. RESULTS: In a meta-analysis, we found that patients with adverse outcomes had a longer SOAT (I2 = 39%, mean difference 0.88, 95% confidence interval = 0.47-1.30). After adjusting for confounding factors, such as age, complications, and treatment options, the retrospective analysis results also showed that severe patients had longer SOAT (mean difference 1.13 [1.00, 1.27], p = 0.046). Besides, most biochemical marker levels improved as the hospitalization time lengthened without the effect of disease severity or associated treatment (p < 0.001). CONCLUSION: Shortening the SOAT may help reduce the possibility of mild patients with COVID-19 progressing to severe illness.


Subject(s)
COVID-19/pathology , Adult , COVID-19/virology , China , Female , Hospitalization , Humans , Male , Middle Aged , Retrospective Studies , Severity of Illness Index
5.
Biochem Genet ; 59(6): 1599-1616, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34009493

ABSTRACT

Plant 14-3-3 proteins play key roles in regulating growth, development, and stress responses. However, little is known about this gene family in papaya (Carica papaya L.). We characterized eight 14-3-3 genes from the papaya genome and designed them as CpGRF1-8. Based on phylogenetic, conserved motif, and gene structure analyses, papaya CpGRFs were divided into ε and non-ε groups. Expression analysis showed differential and class-specific transcription patterns in different organs. Quantitative real-time polymerase chain reaction analysis showed that most CpGRFs had large changes in expression during fruit development and ripening. This indicated that the CpGRFs were involved in regulating fruit development and ripening. Significant expression changes occurred after cold, salt, and drought treatments in papaya seedlings, indicating that CpGRFs were also involved in signaling responses to abiotic stress. These results provide a transcription profile of 14-3-3 genes in organs, during fruit development and ripening and in response to stress. Some highly expressed, fruit-specific, and stress-responsive candidate CpGRFs will be identified for further genetic improvement of papayas.


Subject(s)
Carica , Carica/genetics , Carica/metabolism , Fruit/genetics , Fruit/metabolism , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics
6.
Physiol Plant ; 169(2): 244-257, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32020618

ABSTRACT

The biological functionality of many members of the 14-3-3 gene family is regulated via phosphorylation at multiple amino acid residues. The specific phosphorylation-mediated regulation of these proteins during cassava root tuberization, however, is not well understood. In this study, 15 different 14-3-3 genes (designated MeGRF1 - 15) were identified within the cassava genome. Based upon evolutionary conservation and structural analyses, these cassava 14-3-3 proteins were grouped into ε and non-ε clusters. We found these 15 MeGRF genes to be unevenly distributed across the eight cassava chromosomes. When comparing the expression of these genes during different developmental stages, we found that three of these genes (MeGRF9, 12 and 15) were overexpressed at all developmental stages at 75, 104, 135, 182 and 267 days post-planting relative to the fibrous root stage, whereas two (MeGRF5 and 7) were downregulated during these same points. In addition, the expression of most MeGRF genes changed significantly in the early and middle stages of root tuberization. This suggests that these different MeGRF genes likely play distinct regulatory roles during cassava root tuberization. Subsequently, 18 phosphorylated amino acid residues were detected on nine of these MeGRF proteins. A phosphomimetic mutation at serine-65 in MeGRF3 in Arabidopsis thaliana (Arabidopsis) slightly influenced starch metabolism in these plants, and significantly affected the role of MeGRF3 in salt stress responses. Together these results indicate that 14-3-3 genes play key roles in responses to abiotic stress and the regulation of starch metabolism, offering valuable insights into the functions of these genes in cassava.


Subject(s)
14-3-3 Proteins/genetics , Manihot/genetics , Multigene Family , Plant Proteins/genetics , 14-3-3 Proteins/chemistry , Carbohydrate Metabolism , Gene Expression Profiling , Gene Expression Regulation, Plant , Genome, Plant , Phosphorylation , Phylogeny , Plant Proteins/chemistry , Stress, Physiological
7.
Biochem Genet ; 58(1): 40-62, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31144068

ABSTRACT

Calcium-dependent protein kinases (CDPKs) play vital roles in the regulation of plant growth, development, and tolerance to various abiotic stresses. However, little information is available for this gene family in banana. In this study, 44 CDPKs were identified in banana and were classified into four groups based on phylogenetic, gene structure, and conserved motif analyses. The majority of MaCDPKs generally exhibited similar expression patterns in the different tissues. Transcriptome analyses revealed that many CDPKs showed strong transcript accumulation at the early stages of fruit development and postharvest ripening in both varieties. Interaction network and co-expression analysis further identified some CDPKs-mediated network that was potentially active at the early stages of fruit development. Comparative expression analysis suggested that the high levels of CDPK expression in FJ might be related to its fast ripening characteristic. CDPK expression following the abiotic stress treatments indicated a significant transcriptional response to osmotic, cold, and salt treatment, as well as differential expression profiles, between BX and FJ. The findings of this study elucidate the transcriptional control of CDPKs in development, ripening, and the abiotic stress response in banana. Some tissue-specific, development/ripening-dependent, and abiotic stress-responsive candidate MaCDPK genes were identified for further genetic improvement of banana.


Subject(s)
Musa/growth & development , Musa/genetics , Plant Development/genetics , Plant Proteins/genetics , Protein Kinases/genetics , Stress, Physiological/genetics , Fruit/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Genome, Plant , Plant Leaves/genetics , Plant Roots/genetics
8.
Physiol Mol Biol Plants ; 26(2): 305-315, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32153325

ABSTRACT

Asparagus officinalis L. is a dioecious perennial plant globally known for its fine flavor and high nutritional value. An evaluation of genetic diversity in 46 asparagus accessions was carried out based on morphological and inter-simple sequence repeat (ISSR) markers. The result show that the coefficient of variation for 20 morphological characteristics is between 12.45 and 62.22%. Factor analysis revealed that nine factors explained 83.37% of the total variance. At Euclidean distance of 135.7, 46 accessions were divided into two clusters. Genetic similarity coefficient (GSC) based on ISSR data ranged from 0.60 to 0.97, suggesting a relatively abundant genetic base. Furthermore, the 46 asparagus accessions could also be grouped into three major clusters at a GSC of 0.74. And there is no significant relation between the two marker systems using the Mantel test. Clustering based on morphological traits compared with that based on ISSR data was not consistent, however, some common groupings were observed between two dendrograms. Therefore the results elucidated asparagus germplasm genetic background and determined hybrid parents, which will facilitate optimal application of asparagus germplasm resources and provide additional data for genetic improvement.

10.
Phytopathology ; 106(8): 937-44, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27070425

ABSTRACT

Papaya ringspot virus (PRSV) severely affects the global papaya industry. Transgenic papaya has been proven to have effective resistance to PRSV isolates from Hawaii, Thailand, Taiwan, and other countries. However, those transgenic cultivars failed to show resistance to Hainan Island isolates. Some 76 PRSV samples, representative of all traditional papaya planting areas across five cities (Wen Chang, n = 13; Cheng Mai, n = 14; Chang Jiang, n = 11; Le Dong, n = 25; and San Ya, n = 13) within Hainan Province, were investigated. Results revealed three genetic diversity groups (Hainan I, II, and III) that correlated with geographical distribution. Frequent mutations among PRSV isolates from Hainan were also observed. The high genetic divergence in PRSV isolates from Hainan is likely to be the cause of the failure of genetically modified papaya that targets sequence-specific virus.


Subject(s)
Carica/virology , Genetic Variation , Plant Diseases/virology , Potyvirus/genetics , China , Phylogeny
11.
Proteome Sci ; 13: 15, 2015.
Article in English | MEDLINE | ID: mdl-25949214

ABSTRACT

BACKGROUND: As the rapid growth of the commercialized acreage in genetically modified (GM) crops, the unintended effects of GM crops' biosafety assessment have been given much attention. To investigate whether transgenic events cause unintended effects, comparative proteomics of cotton leaves between the commercial transgenic Bt + CpTI cotton SGK321 (BT) clone and its non-transgenic parental counterpart SY321 wild type (WT) was performed. RESULTS: Using enzyme linked immunosorbent assay (ELISA), Cry1Ac toxin protein was detected in the BT leaves, while its content was only 0.31 pg/g. By 2-DE, 58 differentially expressed proteins (DEPs) were detected. Among them 35 were identified by MS. These identified DEPs were mainly involved in carbohydrate transport and metabolism, chaperones related to post-translational modification and energy production. Pathway analysis revealed that most of the DEPs were implicated in carbon fixation and photosynthesis, glyoxylate and dicarboxylate metabolism, and oxidative pentose phosphate pathway. Thirteen identified proteins were involved in protein-protein interaction. The protein interactions were mainly involved in photosynthesis and energy metabolite pathway. CONCLUSIONS: Our study demonstrated that exogenous DNA in a host cotton genome can affect the plant growth and photosynthesis. Although some unintended variations of proteins were found between BT and WT cotton, no toxic proteins or allergens were detected. This study verified genetically modified operation did not sharply alter cotton leaf proteome, and the target proteins were hardly checked by traditional proteomic analysis.

12.
Mol Cell Proteomics ; 12(8): 2174-95, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23660471

ABSTRACT

Thellungiella halophila, a close relative of Arabidopsis, is a model halophyte used to study plant salt tolerance. The proteomic/physiological/transcriptomic analyses of Thellungiella plant leaves subjected to different salinity levels, reported herein, indicate an extraordinary ability of Thellungiella to adapt to large concentrations of exogenous saline by compartmentalizing Na(+) into cell vacuoles and accumulating proline and soluble sugars as organic osmolytes. Salinity stress stimulated the accumulation of starch in chloroplasts, which resulted in a greatly increased content of starch and total sugars in leaves. Comparative proteomics of Thellungiella leaves identified 209 salt-responsive proteins. Among these, the sequences of 108 proteins were strongly homologous to Arabidopsis protein sequences, and 30 had previously been identified as Thellungiella proteins. Functional classification of these proteins into 16 categories indicated that the majority are involved in carbohydrate metabolism, followed by those involved in energy production and conversion, and then those involved in the transport of inorganic ions. Pathway analysis revealed that most of the proteins are involved in starch and sucrose metabolism, carbon fixation, photosynthesis, and glycolysis. Of these processes, the most affected were starch and sucrose metabolism, which might be pivotal for salt tolerance. The gene expression patterns of the 209 salt-responsive proteins revealed through hierarchical clustering of microarray data and the expression patterns of 29 Thellungiella genes evaluated via quantitative RT-PCR were similar to those deduced via proteomic analysis, which underscored the possibility that starch and sucrose metabolism might play pivotal roles in determining the salt tolerance ability of Thellungiella. Our observations enabled us to propose a schematic representation of the systematic salt-tolerance phenotype in Thellungiella and suggested that the increased accumulation of starch, soluble sugars, and proline, as well as subcellular compartmentalization of sodium, might collectively denote important mechanisms for halophyte salt tolerance.


Subject(s)
Brassicaceae/drug effects , Plant Leaves/metabolism , Plant Proteins/metabolism , Salt Tolerance/physiology , Brassicaceae/growth & development , Brassicaceae/metabolism , Carbohydrate Metabolism , Chloroplasts/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Leaves/growth & development , Plant Proteins/genetics , Proteomics , Salinity , Sodium Chloride/pharmacology , Starch/metabolism
13.
Virus Genes ; 48(3): 502-8, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24510356

ABSTRACT

Small RNA deep sequencing allows for virus identification, virus genome assembly, and strain differentiation. In this study, papaya plants with virus-like symptoms collected in Hainan province were used for deep sequencing and small RNA library construction. After in silicon subtraction of the papaya sRNAs, small RNA reads were used to in the viral genome assembly using a reference-guided, iterative assembly approach. A nearly complete genome was assembled for a Hainan isolate of papaya ringspot virus (PRSV-HN-2). The complete PRSV-HN-2 genome (accession no.: KF734962) was obtained after a 15-nucleotide gap was filled by direct sequencing of the amplified genomic region. Direct sequencing of several random genomic regions of the PRSV isolate did not find any sequence discrepancy with the sRNA-assembled genome. The newly sequenced PRSV-HN-2 genome shared a nucleotide identity of 96 and 94 % to that of the PRSV-HN (EF183499) and PRSV-HN-1 (HQ424465) isolates, and together with these two isolates formed a new PRSV clade. These data demonstrate that the small RNA deep sequencing technology provides a viable and rapid mean to assemble complete viral genomes in plants.


Subject(s)
Carica/virology , Genome, Viral , High-Throughput Nucleotide Sequencing/methods , Plant Diseases/virology , Potyvirus/genetics , Base Sequence , Molecular Sequence Data , Phylogeny , Potyvirus/classification , Potyvirus/isolation & purification , RNA, Viral/genetics , Sequence Analysis, RNA
14.
Plants (Basel) ; 13(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794371

ABSTRACT

Plants significantly shape root-associated microbiota, making rhizosphere microbes useful environmental indicator organisms for safety assessment. Here, we report the pyrosequencing of the bacterial 16S ribosomal RNA in rhizosphere soil samples collected from transgenic cry1Ab/cry1Ac Bt rice Huahui No. 1 (GM crop) and its parental counterpart, Minghui63. We identified a total of 2579 quantifiable bacterial operational taxonomic units (OTUs). Many treatment-enriched microbial OTUs were identified, including 14 NonGM-enriched OTUs and 10 GM-enriched OTUs. OTUs belonging to the phyla Proteobacteria, Actinobacteria, Acidobacteria, Firmicutes, Nitrospirae, Chlorobi and GN04 were identified as statistically different in abundance between GM and the other two treatments. Compared with the different impacts of different rice varieties on microbiota, the impact of rice planting on microbiota is more obvious. Furthermore, Huahui No. 1 transgenic Bt rice had a greater impact on the rhizosphere bacterial communities than Minghui63. Early developmental stages of the transgenic Bt rice had a significant impact on many Bacillaceae communities. Soil chemical properties were not significantly altered by the presence of transgenic Bt rice. The peak concentration level of Bt protein products was detected during the seedling stage of transgenic Bt rice, which may be an intriguing factor for bacterial diversity variations. Based on these findings, we conclude that transgenic Bt rice has a significant impact on root-associated bacteria. This information may be leveraged in future environmental safety assessments of transgenic Bt rice varieties.

15.
Plants (Basel) ; 12(23)2023 Dec 02.
Article in English | MEDLINE | ID: mdl-38068692

ABSTRACT

While transgenic Bacillus thuringiensis (Bt) maize provides pest resistance and a reduced application of chemical pesticides, a comprehensive environmental risk assessment is mandatory before its field release. This research determined the concentrations of Bt protein in plant tissue and in arthropods under field conditions in Gongzhuling City, northeastern China, to provide guidance for the selection of indicator species for non-target risk assessment studies. Bt maize expressing Cry1Ab/2Aj and non-transformed near-isoline were grown under identical environmental and agricultural conditions. Cry1Ab/2Aj was detected in plant tissues and arthropods collected from Bt maize plots during pre-flowering, flowering, and post-flowering. The expression of Cry1Ab/2Aj varied across growth stages and maize tissues, as well as in the collected arthropods at the three growth stages. Therefore, representative species should be chosen to cover the whole growing season and to represent different habitats and ecological functions. Dalbulus maidis (Hemiptera: Cicadellidae), Rhopalosiphum padi (Hemiptera: Aphididae), Heteronychus arator (Coleoptera: Scarabaeidae), and Somaticus angulatus (Coleoptera: Tenebrionidae) are suitable non-target herbivores. Propylea japonica (Coleoptera: Coccinellidae), Paederus fuscipes (Coleoptera: Staphylinidae), Chrysoperla nipponensis (Neuroptera: Chrysopidae), and spiders are suggested predators. Apis cerana and Apis mellifera ligustica (both Hymenoptera: Apidae) represent pollinators and Folsomia candida (Collembola: Isotomidae) decomposers.

16.
Electrophoresis ; 33(2): 296-306, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22222974

ABSTRACT

Considering the importance of CBB staining in visualizing proteins in 2-DE gels, any improvement in the existing protocols with high sensitivity and good MS compatibility is of significant importance. In this study, we systematically evaluated the effects of different staining parameters on CBB methods by 1-DE and 2-DE, and demonstrated that G-250 was more suitable for visualizing low-abundant proteins as well as generating more spots than R-250, whereas R-250 had a superior capability for quick staining of high-abundant proteins. The staining produced by mixing G-250 and R-250 in different ratios showed similar sensitivity. Compared with acetic acid, phosphoric acid produced more protein spots. Ammonium-based stain demonstrated a superior sensitivity than the aluminum-based one. Based on these findings, a new protocol using CBB G-250, ammonium sulfate and phosphoric acid (GAP) was developed by incorporating the fixation, sensitization and staining procedures together. The comparison of GAP with other methods revealed that GAP generated more protein spots and had wider applications. The identification of 11 proteins demonstrated that GAP was not only compatible with MS but also obviously reduced in vitro protein modification, and thus could be a preferable protocol in the future proteomic analysis.


Subject(s)
Ammonium Sulfate/chemistry , Phosphoric Acids/chemistry , Proteomics/methods , Rosaniline Dyes/chemistry , Staining and Labeling/methods , Amino Acid Sequence , Analysis of Variance , Animals , Cattle , Electrophoresis, Gel, Two-Dimensional/methods , HeLa Cells , Humans , Mice , Molecular Sequence Data , Proteins/analysis
17.
Life (Basel) ; 12(9)2022 Sep 19.
Article in English | MEDLINE | ID: mdl-36143489

ABSTRACT

Late embryogenesis abundant (LEA) proteins comprise a diverse superfamily involved in plant development and stress responses. This study presents a first genome-wide analysis of LEA genes in papaya (Carica papaya L., Caricaceae), an economically important tree fruit crop widely cultivated in the tropics and subtropics. A total of 28 members were identified from the papaya genome, which belong to eight families with defined Pfam domains, i.e., LEA_1 (3), LEA_2 (4), LEA_3 (5), LEA_4 (5), LEA_5 (2), LEA_6 (2), DHN (4), and SMP (3). The family numbers are comparable to those present in Ricinus communis (Euphorbiaceae, 28) and Moringa oleifera (Moringaceae, 29), but relatively less than that found in Moringa oleifera (Cleomaceae, 39) and Arabidopsis thaliana (Brassicaceae, 51), implying lineage-specific evolution in Brassicales. Indeed, best-reciprocal-hit-based sequence comparison and synteny analysis revealed the presence of 29 orthogroups, and significant gene expansion in Tarenaya and Arabidopsis was mainly contributed by whole-genome duplications that occurred sometime after their split with the papaya. Though a role of transposed duplication was also observed, tandem duplication was shown to be a key contributor in gene expansion of most species examined. Further comparative analyses of exon-intron structures and protein motifs supported fast evolution of this special superfamily, especially in Arabidopsis. Transcriptional profiling revealed diverse expression patterns of CpLEA genes over various tissues and different stages of developmental fruit. Moreover, the transcript level of most genes appeared to be significantly regulated by drought, cold, and salt stresses, corresponding to the presence of cis-acting elements associated with stress response in their promoter regions. These findings not only improve our knowledge on lineage-specific family evolution in Brassicales, but also provide valuable information for further functional analysis of LEA genes in papaya.

18.
Front Plant Sci ; 13: 971506, 2022.
Article in English | MEDLINE | ID: mdl-36161024

ABSTRACT

Pineapple (Ananas comosus L.) is one of the most valuable subtropical fruit crop in the world. The sweet-acidic taste of the pineapple fruits is a major contributor to the characteristic of fruit quality, but its formation mechanism remains elusive. Here, targeted metabolomic and transcriptomic analyses were performed during the fruit developmental stages in two pineapple cultivars ("Comte de Paris" and "MD-2") to gain a global view of the metabolism and transport pathways involved in sugar and organic acid accumulation. Assessment of the levels of different sugar and acid components during fruit development revealed that the predominant sugar and organic acid in mature fruits of both cultivars was sucrose and citric acid, respectively. Weighted gene coexpression network analysis of metabolic phenotypes and gene expression profiling enabled the identification of 21 genes associated with sucrose accumulation and 19 genes associated with citric acid accumulation. The coordinated interaction of the 21 genes correlated with sucrose irreversible hydrolysis, resynthesis, and transport could be responsible for sucrose accumulation in pineapple fruit. In addition, citric acid accumulation might be controlled by the coordinated interaction of the pyruvate-to-acetyl-CoA-to-citrate pathway, gamma-aminobutyric acid pathway, and tonoplast proton pumps in pineapple. These results provide deep insights into the metabolic regulation of sweetness and acidity in pineapple.

19.
Biology (Basel) ; 11(12)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36552332

ABSTRACT

Mitigating the function of acquired transgenes in crop wild/weedy relatives can provide an ideal strategy to reduce the possible undesired environmental impacts of pollen-mediated transgene flow from genetically engineered (GE) crops. To explore a transgene mitigation system in rice, we edited the seed-shattering genes, SH4 and qSH1, using a weedy rice line ("C9") that originally had strong seed shattering. We also analyzed seed size-related traits, the total genomic transcriptomic data, and RT-qPCR expression of the SH4 or qSH1 gene-edited and SH4/qSH1 gene-edited weedy rice lines. Substantially reduced seed shattering was observed in all gene-edited weedy rice lines. The single gene-edited weedy rice lines, either the SH4 or qSH1 gene, did not show a consistent reduction in their seed size-related traits. In addition, reduced seed shattering was closely linked with the weakness and absence of abscission layers and reduced abscisic acid (ABA). Additionally, the genes closely associated with ABA biosynthesis and signaling transduction, as well as cell-wall hydrolysis, were downregulated in all gene-edited weedy rice lines. These findings facilitate our deep insights into the underlying mechanisms of reduced seed shattering in plants in the rice genus Oryza. In addition, such a mitigating technology also has practical applications for reducing the potential adverse environmental impacts caused by transgene flow and for managing the infestation of weedy rice by acquiring the mitigator from GE rice cultivars through natural gene flow.

20.
Electrophoresis ; 32(3-4): 348-56, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21298662

ABSTRACT

In 1-DE, proteins were traditionally mixed with the standard Laemmli buffer and boiled for several minutes. Recently, proteins dissolved in lysis buffer were used to produce better-resolved 2-DE gels, but thermal denaturation procedure still remained in some proteomic analysis. To determine the detailed effects of thermal denaturation on SDS-PAGE and MS, both 1-DE and 2-DE were performed using proteins heated at 100°C for different periods of time, and 17 protein bands/spots were positively identified by MALDI TOF/TOF MS/MS. Protein profiles on both 1-DE and 2-DE gels changed obviously and more polydisperse bands/spots were observed with increased heating time for over-heated samples. Based on these observations, an alternative protein marker-producing method was designed by directly dissolving protein standards without BSA into lysis buffer. This new kind of protein marker could be stored at room temperature for a long time, thus was more convenient for using and shipping. The identification of 17 proteins via MS and comparison of their identities revealed MASCOT-searched scores, number of both matched peptides, total searched peptides and sequence coverage became progressively lower with increasing denaturation intensity, probably due to the interference of thermal denaturation on trypsin cleavage efficiency and produced redundant modified peptides. Therefore, it was concluded that thermal denaturation not only changed the protein profiles and produced more polydisperse protein bands/spots, but also heavily interfered with the subsequent MS analysis, hence not recommended in future proteomic analysis for proteins dissolved in lysis buffer.


Subject(s)
Blood Proteins/analysis , Electrophoresis, Gel, Two-Dimensional/methods , Electrophoresis, Polyacrylamide Gel/methods , Plant Proteins/analysis , Protein Denaturation , Serum Albumin, Bovine/analysis , Amino Acid Sequence , Cell Line , Electrophoresis, Gel, Two-Dimensional/instrumentation , Escherichia coli/metabolism , HeLa Cells/metabolism , Humans , Molecular Sequence Data , Peptides/analysis , Serum Albumin, Bovine/metabolism , Sodium Dodecyl Sulfate/standards , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Tandem Mass Spectrometry/methods , Tromethamine/standards
SELECTION OF CITATIONS
SEARCH DETAIL