ABSTRACT
Citrate is a critical metabolic substrate and key regulator of energy metabolism in mammalian cells. It has been known for decades that the skeleton contains most (>85%) of the body's citrate, but the question of why and how this metabolite should be partitioned in bone has received singularly little attention. Here, we show that osteoblasts use a specialized metabolic pathway to regulate uptake, endogenous production, and the deposition of citrate into bone. Osteoblasts express high levels of the membranous Na+-dependent citrate transporter solute carrier family 13 member 5 (Slc13a5) gene. Inhibition or genetic disruption of Slc13a5 reduced osteogenic citrate uptake and disrupted mineral nodule formation. Bones from mice lacking Slc13a5 globally, or selectively in osteoblasts, showed equivalent reductions in cortical thickness, with similarly compromised mechanical strength. Surprisingly, citrate content in mineral from Slc13a5-/- osteoblasts was increased fourfold relative to controls, suggesting the engagement of compensatory mechanisms to augment endogenous citrate production. Indeed, through the coordinated functioning of the apical membrane citrate transporter SLC13A5 and a mitochondrial zinc transporter protein (ZIP1; encoded by Slc39a1), a mediator of citrate efflux from the tricarboxylic acid cycle, SLC13A5 mediates citrate entry from blood and its activity exerts homeostatic control of cytoplasmic citrate. Intriguingly, Slc13a5-deficient mice also exhibited defective tooth enamel and dentin formation, a clinical feature, which we show is recapitulated in primary teeth from children with SLC13A5 mutations. Together, our results reveal the components of an osteoblast metabolic pathway, which affects bone strength by regulating citrate deposition into mineral hydroxyapatite.
Subject(s)
Citric Acid , Symporters , Animals , Mice , Citric Acid/metabolism , Symporters/metabolism , Durapatite/metabolism , Citrates , Citric Acid Cycle , Osteoblasts/metabolism , Mammals/metabolism , Dicarboxylic Acid Transporters/metabolismABSTRACT
Despite the many recent breakthroughs in cancer research, oncology has traditionally been seen as a distinct field from other diseases. Recently, more attention has been paid to repurposing established therapeutic strategies and targets of other diseases towards cancer treatment, with some of these attempts generating promising outcomes [1, 2]. Recent studies using advanced metabolomics technologies [3] have shown evidence of close metabolic similarities between cancer and neurological diseases. These studies have unveiled several metabolic characteristics shared by these two categories of diseases, including metabolism of glutamine, gamma-aminobutyric acid (GABA), and N-acetyl-aspartyl-glutamate (NAAG) [4-6]. The striking metabolic overlap between cancer and neurological diseases sheds light on novel therapeutic strategies for cancer treatment. For example, 2-(phosphonomethyl) pentanedioic acid (2-PMPA), one of the glutamate carboxypeptidase II (GCP II) inhibitors that prevent the conversion of NAAG to glutamate, has been shown to suppress cancer growth [6, 7]. These promising results have led to an increased interest in integrating this metabolic overlap between cancer and neurological diseases into the study of cancer metabolism. The advantages of studying this metabolic overlap include not only drug repurposing but also translating existing knowledge from neurological diseases to the field of cancer research. This chapter discusses the specific overlapping metabolic features between cancer and neurological diseases, focusing on glutamine, GABA, and NAAG metabolisms. Understanding the interconnections between cancer and neurological diseases will guide researchers and clinicians to find more effective cancer treatments.
Subject(s)
Neoplasms , Organophosphorus Compounds , Dipeptides , Glutamic Acid , Glutamine , Neoplasms/drug therapy , gamma-Aminobutyric AcidABSTRACT
Foam fractionation and resin adsorption were used to recover soybean saponins from the industrial residue of soybean meal. First, a two-stage foam fractionation technology was studied for concentrating soybean saponins from the leaching liquor. Subsequently, resin adsorption was used to purify soybean saponins from the foamate in foam fractionation. The results showed that the enrichment ratio, the recovery percentage, and the purity of soybean saponins by using the two-stage foam fractionation technology could reach 4.45, 74%, and 67%, respectively. After resin adsorption and desorption, the purity of soybean saponins in the freeze-dried powder from the desorption solution was 88.4%.
Subject(s)
Glycine max/chemistry , Saponins/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Solutions , Spectroscopy, Fourier Transform InfraredABSTRACT
Importance: Disease models for atopic dermatitis (AD) have primarily focused on understanding underlying environmental, immunologic, and genetic etiologies. However, the role of metabolic mechanisms in AD remains understudied. Objective: To investigate the circulating blood metabolomic and cytokine profile of AD as compared to healthy control patients. Design: This study collected plasma from 20 atopic dermatitis with moderate-to-severe itch (score of ≥5 on the itch Numeric Rating Scale and IGA score ≥3) and 24 healthy control patients. Mass-spectrometry based metabolite data were compared between AD and healthy controls. Unsupervised and supervised machine learning algorithms and univariate analysis analyzed metabolic concentrations. Metabolite enrichment and pathway analyses were performed on metabolites with significant fold change between AD and healthy control patients. To investigate the correlation between metabolites levels and cytokines, Spearman's rank correlation coefficients were calculated between metabolites and cytokines. Setting: Patients were recruited from the Johns Hopkins Itch Center and dermatology outpatient clinics in the Johns Hopkins Outpatient Center. Participants: The study included 20 atopic dermatitis patients and 24 healthy control patients. Main outcomes and measures: Fold changes of metabolites in AD vs healthy control plasma. Results: In patients with AD, amino acids isoleucine, tyrosine, threonine, tryptophan, valine, methionine, and phenylalanine, the amino acid derivatives creatinine, indole-3-acrylic acid, acetyl-L-carnitine, L-carnitine, 2-hydroxycinnamic acid, N-acetylaspartic acid, and the fatty amide oleamide had greater than 2-fold decrease (all P-values<0.0001) compared to healthy controls. Enriched metabolites were involved in branched-chain amino acid (valine, leucine, and isoleucine) degradation, catecholamine biosynthesis, thyroid hormone synthesis, threonine metabolism, and branched and long-chain fatty acid metabolism. Dysregulated metabolites in AD were positively correlated cytokines TARC and MCP-4 and negatively correlated with IL-1a and CCL20. Conclusions and relevance: Our study characterized novel dysregulated circulating plasma metabolites and metabolic pathways that may be involved in the pathogenesis of AD. These metabolic pathways serve as potential future biomarkers and therapeutic targets in the treatment of AD.
Subject(s)
Dermatitis, Atopic , Humans , Cytokines/metabolism , Isoleucine , Pruritus , Valine , ThreonineABSTRACT
Chronic pruritus of unknown origin (CPUO) is characterized by chronic itch for 6 weeks or greater without an identifiable primary cause. Studies are needed to investigate circulating blood biomarkers to elucidate disease pathogenesis. The objective of this study was to investigate changes in circulating blood metabolites in CPUO patients and to identify potential therapeutic targets. Our cross-sectional study collected plasma from 11 CPUO patients and 11 matched control patients for mass-spectrometry based metabolite data analysis. 15 metabolites differed significantly in the blood of CPUO patients compared to controls, including nine amino acids (isoleucine, L-tyrosine, threonine, DL-tryptophan, L-valine, methionine, glycine, lysine, and L-phenylalanine), four amino acid derivatives (creatinine, DL-carnitine, acetyl-L-carnitine, and indole-3-acrylic acid), and two aromatic and fatty acid derivatives (2-hydroxycinnamic acid and oleamide). These metabolites were also correlated with itch severity. Metabolic set enrichment analysis (MSEA) identified downregulation of several pathways in CPUO: phenylalanine, tyrosine, tryptophan biosynthesis; catecholamine biosynthesis; and glycine, serine, and threonine metabolism. Our study identified decreases in several circulating plasma metabolites in CPUO patients and downregulation of pathways related to catecholamine biosynthesis and tryptophan biosynthesis, providing insight into the pathogenesis of CPUO.
Subject(s)
Biomarkers , Metabolomics , Pruritus , Humans , Biomarkers/blood , Male , Female , Middle Aged , Pruritus/blood , Pruritus/etiology , Metabolomics/methods , Adult , Aged , Chronic Disease , Cross-Sectional Studies , Case-Control Studies , Metabolome , Amino Acids/bloodABSTRACT
Non-clear cell renal cell carcinomas (non-ccRCCs) encompass diverse malignant and benign tumors. Refinement of differential diagnosis biomarkers, markers for early prognosis of aggressive disease, and therapeutic targets to complement immunotherapy are current clinical needs. Multi-omics analyses of 48 non-ccRCCs compared with 103 ccRCCs reveal proteogenomic, phosphorylation, glycosylation, and metabolic aberrations in RCC subtypes. RCCs with high genome instability display overexpression of IGF2BP3 and PYCR1. Integration of single-cell and bulk transcriptome data predicts diverse cell-of-origin and clarifies RCC subtype-specific proteogenomic signatures. Expression of biomarkers MAPRE3, ADGRF5, and GPNMB differentiates renal oncocytoma from chromophobe RCC, and PIGR and SOSTDC1 distinguish papillary RCC from MTSCC. This study expands our knowledge of proteogenomic signatures, biomarkers, and potential therapeutic targets in non-ccRCC.
Subject(s)
Biomarkers, Tumor , Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Proteogenomics/methods , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Transcriptome/genetics , Male , Female , Middle Aged , Gene Expression Regulation, NeoplasticABSTRACT
Clear cell renal cell carcinomas (ccRCCs) represent â¼75% of RCC cases and account for most RCC-associated deaths. Inter- and intratumoral heterogeneity (ITH) results in varying prognosis and treatment outcomes. To obtain the most comprehensive profile of ccRCC, we perform integrative histopathologic, proteogenomic, and metabolomic analyses on 305 ccRCC tumor segments and 166 paired adjacent normal tissues from 213 cases. Combining histologic and molecular profiles reveals ITH in 90% of ccRCCs, with 50% demonstrating immune signature heterogeneity. High tumor grade, along with BAP1 mutation, genome instability, increased hypermethylation, and a specific protein glycosylation signature define a high-risk disease subset, where UCHL1 expression displays prognostic value. Single-nuclei RNA sequencing of the adverse sarcomatoid and rhabdoid phenotypes uncover gene signatures and potential insights into tumor evolution. In vitro cell line studies confirm the potential of inhibiting identified phosphoproteome targets. This study molecularly stratifies aggressive histopathologic subtypes that may inform more effective treatment strategies.
Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Proteogenomics , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Treatment Outcome , Prognosis , Biomarkers, Tumor/geneticsABSTRACT
Multistage hydraulic fracturing is used in horizontal wells to increase the production of tight oil. Fracturing fluids are used in hydraulic fracturing to ensure proppants are suspended, but fluid residuals can cause formation damage and reduce rock permeability; meanwhile, fracture conductivity can be further reduced due to the flowback of proppants during the early stage of production. In this study, steel plates and hydraulically fractured reservoir rocks are tested in a modified API cell to understand the impacts of flowback rate, fracturing fluid, and closure stress on proppant flowback and fracture conductivity. When the closure stress increased from 21 to 30 MPa, retained permeability decreased by slickwater from 35.71 to 29.84% in steel plates; during the flowback, more than 47% of proppants flowed back, and the fracture conductivity increased by 10 times under 21 MPa, which shows the limitation of the API method on the study of proppant flowback. When shale plates are used, the critical flow rate that prevents the proppant flowback was found to be 5.5 × 10-4-1.6 × 10-3 m/s for the 30/50 mesh sands (around 55-340 m3/d for a typical horizontal well), and the retained permeability decreased from 23.33 to 22.86% due to an increase of closure stress from 21 to 30 MPa. Results of this study can guide the optimizing of the flowback scheme in the field that minimizes the proppant flowback in different fracturing fluids.
ABSTRACT
Dysregulation of energy producing metabolic pathways has been observed in older adults with frailty. In this study, we used liquid chromatography-mass spectrometry technology to identify aging- and frailty-related differences in metabolites involved in glycolysis, the tricarboxylic (TCA) cycle, and other energy metabolism-related pathways in the serum of a cohort of community-dwelling adults aged 20-97 (n = 146). We also examined the relationship between serum levels of metabolites and functional measures, physical frailty, and risk status for adverse health outcomes. We observed elevated levels of TCA cycle and glycolytic intermediates in frail subjects; however, the differences in the levels of ATP and other energy metabolites between young, nonfrail, and frail adults were not significant. Instead, we found that serum levels of neurotransmitters N-acetyl-aspartyl-glutamate, glutamate, and γ-aminobutyric acid were significantly elevated in older adults with frailty. These elevations of glycolytic and TCA cycle intermediates, and neurotransmitters may be part of the biological signature of frailty.
Subject(s)
Frailty , Humans , Aged , Metabolomics , Aging , Glycolysis , Mass Spectrometry , Frail ElderlyABSTRACT
Single-cell metabolomics (SCM) is currently one of the most powerful tools for performing high-throughput metabolic analysis at the cellular level. The power of single-cell metabolomics to determine the metabolic profiles of individual cells makes it very suitable for decoding cell heterogeneity. SCM bears great potential in cell type identification and differentiation within cell colonies. With the development of various equipment and techniques, SCM analysis has become possible for a wide range of biological samples. Many fields have incorporated this cutting-edge analytic tool to generate fruitful findings. This review article pays close attention to the prevalent techniques utilized in SCM and the exciting new findings and applications developed by studies in phytology, neurology, and oncology using SCM.
Subject(s)
Metabolome , Metabolomics , Single-Cell AnalysisABSTRACT
Depletion of mitochondrial copper, which shifts metabolism from respiration to glycolysis and reduces energy production, is known to be effective against cancer types that depend on oxidative phosphorylation. However, existing copper chelators are too toxic or ineffective for cancer treatment. Here we develop a safe, mitochondria-targeted, copper-depleting nanoparticle (CDN) and test it against triple-negative breast cancer (TNBC). We show that CDNs decrease oxygen consumption and oxidative phosphorylation, cause a metabolic switch to glycolysis and reduce ATP production in TNBC cells. This energy deficiency, together with compromised mitochondrial membrane potential and elevated oxidative stress, results in apoptosis. CDNs should be less toxic than existing copper chelators because they favorably deprive copper in the mitochondria in cancer cells instead of systemic depletion. Indeed, we demonstrate low toxicity of CDNs in healthy mice. In three mouse models of TNBC, CDN administration inhibits tumor growth and substantially improves survival. The efficacy and safety of CDNs suggest the potential clinical relevance of this approach.