Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Methods ; 217: 18-26, 2023 09.
Article in English | MEDLINE | ID: mdl-37356780

ABSTRACT

Global Run-On sequencing is a reliable and widely used approach for monitoring nascent transcription on a genomewide scale. The assay has been successfully used for studying global transcription in humans, plants, worms, flies, and fission yeast. Here we describe a GRO-seq protocol for studying transcription in budding yeast, Saccharomyces cerevisiae. Briefly, the technique involves permeabilization of actively growing yeast cells, allowing transcription to proceed in permeabilized cells in the presence of brominated UTP, affinity purification of bromo-UMP incorporated nascent transcripts followed by cDNA library construction, deep sequencing, and mapping against the reference genome. The approach maps the position of transcriptionally active RNA polymerase on a genomewide basis. In addition to identifying the complete set of transcriptionally active genes in a cell under a given set of conditions, the method can be used to determine elongation rate, termination defect and promoter directionality at the genomewide level. The approach is especially useful in identifying short-lived unstable transcripts that are rapidly degraded even before they leave the nucleus.


Subject(s)
Saccharomyces cerevisiae , Transcription, Genetic , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , DNA-Directed RNA Polymerases/metabolism , Sequence Analysis, RNA/methods , Cell Nucleus/metabolism , RNA Polymerase II/metabolism
2.
Am J Pathol ; 191(2): 368-384, 2021 02.
Article in English | MEDLINE | ID: mdl-33181138

ABSTRACT

Canonical Wnt signaling is critical for melanocyte lineage commitment and melanoma development. RAD6B, a ubiquitin-conjugating enzyme critical for translesion DNA synthesis, potentiates ß-catenin stability/activity by inducing proteasome-insensitive polyubiquitination. RAD6B expression is induced by ß-catenin, triggering a positive feedback loop between the two proteins. RAD6B function in melanoma development/progression was investigated by targeting RAD6B using CrispR/Cas9 or an RAD6-selective small-molecule inhibitor #9 (SMI#9). SMI#9 treatment inhibited melanoma cell proliferation but not normal melanocytes. RAD6B knockout or inhibition in metastatic melanoma cells downregulated ß-catenin, ß-catenin-regulated microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10, vimentin proteins, and MITF-regulated melan A. RAD6B knockout or inhibition decreased migration/invasion, tumor growth, and lung metastasis. RNA-sequencing and stem cell pathway real-time RT-PCR analysis revealed profound reductions in WNT1 expressions in RAD6B knockout M14 cells compared with control. Expression levels of ß-catenin-regulated genes VIM, MITF-M, melan A, and TYRP1 (a tyrosinase family member critical for melanin biosynthesis) were reduced in RAD6B knockout cells. Pathway analysis identified gene networks regulating stem cell pluripotency, Wnt signaling, melanocyte development, pigmentation signaling, and protein ubiquitination, besides DNA damage response signaling, as being impacted by RAD6B gene disruption. These data reveal an important and early role for RAD6B in melanoma development besides its bonafide translesion DNA synthesis function, and suggest that targeting RAD6B may provide a novel strategy to treat melanomas with dysregulated canonical Wnt signaling.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Melanoma/metabolism , Melanoma/pathology , Ubiquitin-Conjugating Enzymes/metabolism , Wnt Signaling Pathway/physiology , Animals , Cell Line , Heterografts , Humans , Mice , Mice, Nude , Phenotype
3.
Nat Mater ; 16(4): 419-425, 2017 04.
Article in English | MEDLINE | ID: mdl-27941807

ABSTRACT

Amniogenesis-the development of amnion-is a critical developmental milestone for early human embryogenesis and successful pregnancy. However, human amniogenesis is poorly understood due to limited accessibility to peri-implantation embryos and a lack of in vitro models. Here we report an efficient biomaterial system to generate human amnion-like tissue in vitro through self-organized development of human pluripotent stem cells (hPSCs) in a bioengineered niche mimicking the in vivo implantation environment. We show that biophysical niche factors act as a switch to toggle hPSC self-renewal versus amniogenesis under self-renewal-permissive biochemical conditions. We identify a unique molecular signature of hPSC-derived amnion-like cells and show that endogenously activated BMP-SMAD signalling is required for the amnion-like tissue development by hPSCs. This study unveils the self-organizing and mechanosensitive nature of human amniogenesis and establishes the first hPSC-based model for investigating peri-implantation human amnion development, thereby helping advance human embryology and reproductive medicine.


Subject(s)
Amnion/metabolism , Biomimetic Materials , Models, Biological , Pluripotent Stem Cells/metabolism , Stem Cell Niche , Tissue Engineering/methods , Amnion/cytology , Cell Line , Humans , Pluripotent Stem Cells/cytology , Reproductive Medicine/methods
4.
PLoS Genet ; 10(5): e1004339, 2014 May.
Article in English | MEDLINE | ID: mdl-24811540

ABSTRACT

We previously reported that TR2 and TR4 orphan nuclear receptors bind to direct repeat (DR) elements in the ε- and γ-globin promoters, and act as molecular anchors for the recruitment of epigenetic corepressors of the multifaceted DRED complex, thereby leading to ε- and γ-globin transcriptional repression during definitive erythropoiesis. Other than the ε- and γ-globin and the GATA1 genes, TR4-regulated target genes in human erythroid cells remain unknown. Here, we identified TR4 binding sites genome-wide using chromatin immunoprecipitation followed by massively parallel sequencing (ChIP-seq) as human primary CD34(+) hematopoietic progenitors differentiated progressively to late erythroid precursors. We also performed whole transcriptome analyses by RNA-seq to identify TR4 downstream targets after lentiviral-mediated TR4 shRNA knockdown in erythroid cells. Analyses from combined ChIP-seq and RNA-seq datasets indicate that DR1 motifs are more prevalent in the proximal promoters of TR4 direct target genes, which are involved in basic biological functions (e.g., mRNA processing, ribosomal assembly, RNA splicing and primary metabolic processes). In contrast, other non-DR1 repeat motifs (DR4, ER6 and IR1) are more prevalent at gene-distal TR4 binding sites. Of these, approximately 50% are also marked with epigenetic chromatin signatures (such as P300, H3K27ac, H3K4me1 and H3K27me3) associated with enhancer function. Thus, we hypothesize that TR4 regulates gene transcription via gene-proximal DR1 sites as TR4/TR2 heterodimers, while it can associate with novel nuclear receptor partners (such as RXR) to bind to distant non-DR1 consensus sites. In summary, this study reveals that the TR4 regulatory network is far more complex than previously appreciated and that TR4 regulates basic, essential biological processes during the terminal differentiation of human erythroid cells.


Subject(s)
Erythroid Cells/metabolism , Nuclear Proteins/metabolism , Repressor Proteins/metabolism , Binding Sites , Cells, Cultured , Chromatin Immunoprecipitation , Enhancer Elements, Genetic , Genome, Human , Humans , Nuclear Proteins/chemistry , Repressor Proteins/chemistry
5.
Dev Dyn ; 245(5): 614-26, 2016 05.
Article in English | MEDLINE | ID: mdl-26930384

ABSTRACT

BACKGROUND: Digestion is facilitated by coordinated contractions of the intestinal muscularis externa, a bilayered smooth muscle structure that is composed of inner circular muscles (ICM) and outer longitudinal muscles (OLM). We performed transcriptome analysis of intestinal mesenchyme tissue at E14.5, when the ICM, but not the OLM, is present, to investigate the transcriptional program of the ICM. RESULTS: We identified 3967 genes enriched in E14.5 intestinal mesenchyme. The gene expression profiles were clustered and annotated to known muscle genes, identifying a muscle-enriched subcluster. Using publically available in situ data, 127 genes were verified as expressed in ICM. Examination of the promoter and regulatory regions for these co-expressed genes revealed enrichment for cJUN transcription factor binding sites, and cJUN protein was enriched in ICM. cJUN ChIP-seq, performed at E14.5, revealed that cJUN regulatory regions contain characteristics of muscle enhancers. Finally, we show that cJun is a target of Hedgehog (Hh), a signaling pathway known to be important in smooth muscle development, and identify a cJun genomic enhancer that is responsive to Hh. CONCLUSIONS: This work provides the first transcriptional catalog for the developing ICM and suggests that cJun regulates gene expression in the ICM downstream of Hh signaling. Developmental Dynamics 245:614-626, 2016. © 2016 Wiley Periodicals, Inc.


Subject(s)
Gene Expression Regulation, Developmental , Intestines/embryology , Muscle, Smooth/embryology , Transcriptome , Animals , Genes, jun/physiology , Hedgehog Proteins , Mice
6.
BMC Dev Biol ; 16: 4, 2016 Feb 24.
Article in English | MEDLINE | ID: mdl-26912062

ABSTRACT

BACKGROUND: The Hedgehog (Hh) signaling pathway, acting through three homologous transcription factors (GLI1, GLI2, GLI3) in vertebrates, plays multiple roles in embryonic organ development and adult tissue homeostasis. At the level of the genome, GLI factors bind to specific motifs in enhancers, some of which are hundreds of kilobases removed from the gene promoter. These enhancers integrate the Hh signal in a context-specific manner to control the spatiotemporal pattern of target gene expression. Importantly, a number of genes that encode Hh pathway molecules are themselves targets of Hh signaling, allowing pathway regulation by an intricate balance of feed-back activation and inhibition. However, surprisingly few of the critical enhancer elements that control these pathway target genes have been identified despite the fact that such elements are central determinants of Hh signaling activity. Recently, ChIP studies have been carried out in multiple tissue contexts using mouse models carrying FLAG-tagged GLI proteins (GLI(FLAG)). Using these datasets, we tested whether a meta-analysis of GLI binding sites, coupled with a machine learning approach, could reveal genomic features that could be used to empirically identify Hh-regulated enhancers linked to loci of the Hh signaling pathway. RESULTS: A meta-analysis of four existing GLI(FLAG) datasets revealed a library of GLI binding motifs that was substantially more restricted than the potential sites predicted by previous in vitro binding studies. A machine learning method (kmer-SVM) was then applied to these datasets and enriched k-mers were identified that, when applied to the mouse genome, predicted as many as 37,000 potential Hh enhancers. For functional analysis, we selected nine regions which were annotated to putative Hh pathway molecules and found that seven exhibited GLI-dependent activity, indicating that they are directly regulated by Hh signaling (78% success rate). CONCLUSIONS: The results suggest that Hh enhancer regions share common sequence features. The kmer-SVM machine learning approach identifies those features and can successfully predict functional Hh regulatory regions in genomic DNA surrounding Hh pathway molecules and likely, other Hh targets. Additionally, the library of enriched GLI binding motifs that we have identified may allow improved identification of functional GLI binding sites.


Subject(s)
Computational Biology/methods , Enhancer Elements, Genetic/genetics , Hedgehog Proteins/genetics , Signal Transduction/genetics , Animals , Base Sequence , Cell Line , Hedgehog Proteins/metabolism , Mice, Inbred C57BL , Molecular Sequence Data , Nucleotide Motifs/genetics , Oncogene Proteins/metabolism , Protein Binding , Reproducibility of Results , Support Vector Machine , Trans-Activators/metabolism , Transcription Factors/metabolism , Zinc Finger Protein GLI1
7.
Genetics ; 227(3)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38718207

ABSTRACT

Organisms with differentiated sex chromosomes must accommodate unequal gene dosage in males and females. Male fruit flies increase X-linked gene expression to compensate for hemizygosity of their single X chromosome. Full compensation requires localization of the Male-Specific Lethal (MSL) complex to active genes on the male X, where it modulates chromatin to elevate expression. The mechanisms that identify X chromatin are poorly understood. The euchromatic X is enriched for AT-rich, ∼359 bp satellites termed the 1.688X repeats. Autosomal insertions of 1.688X DNA enable MSL recruitment to nearby genes. Ectopic expression of dsRNA from one of these repeats produces siRNA and partially restores X-localization of MSLs in males with defective X recognition. Surprisingly, expression of double-stranded RNA from three other 1.688X repeats failed to rescue males. We reconstructed dsRNA-expressing transgenes with sequence from two of these repeats and identified phasing of repeat DNA, rather than sequence or orientation, as the factor that determines rescue of males with defective X recognition. Small RNA sequencing revealed that siRNA was produced in flies with a transgene that rescues, but not in those carrying a transgene with the same repeat but different phasing. We demonstrate that pericentromeric X heterochromatin promotes X recognition through a maternal effect, potentially mediated by small RNA from closely related heterochromatic repeats. This suggests that the sources of siRNAs promoting X recognition are highly redundant. We propose that enrichment of satellite repeats on Drosophilid X chromosomes facilitates the rapid evolution of differentiated sex chromosomes by marking the X for compensation.


Subject(s)
Dosage Compensation, Genetic , RNA, Small Interfering , X Chromosome , Animals , Male , X Chromosome/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Female , Repetitive Sequences, Nucleic Acid , Drosophila melanogaster/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism
8.
Sci Rep ; 14(1): 7676, 2024 04 01.
Article in English | MEDLINE | ID: mdl-38561433

ABSTRACT

The conserved miR-183/96/182 cluster (miR-183C) is expressed in both corneal resident myeloid cells (CRMCs) and sensory nerves (CSN) and modulates corneal immune/inflammatory responses. To uncover cell type-specific roles of miR-183C in CRMC and CSN and their contributions to corneal physiology, myeloid-specific miR-183C conditional knockout (MS-CKO), and sensory nerve-specific CKO (SNS-CKO) mice were produced and characterized in comparison to the conventional miR-183C KO. Immunofluorescence and confocal microscopy of flatmount corneas, corneal sensitivity, and tear volume assays were performed in young adult naïve mice; 3' RNA sequencing (Seq) and proteomics in the trigeminal ganglion (TG), cornea and CRMCs. Our results showed that, similar to conventional KO mice, the numbers of CRMCs were increased in both MS-CKO and SNS-CKO vs age- and sex-matched WT control littermates, suggesting intrinsic and extrinsic regulations of miR-183C on CRMCs. The number of CRMCs was increased in male vs female MS-CKO mice, suggesting sex-dependent regulation of miR-183C on CRMCs. In the miR-183C KO and SNS-CKO, but not the MS-CKO mice, CSN density was decreased in the epithelial layer of the cornea, but not the stromal layer. Functionally, corneal sensitivity and basal tear volume were reduced in the KO and SNS-CKO, but not the MS-CKO mice. Tear volume in males is consistently higher than female WT mice. Bioinformatic analyses of the transcriptomes revealed a series of cell-type specific target genes of miR-183C in TG sensory neurons and CRMCs. Our data elucidate that miR-183C imposes intrinsic and extrinsic regulation on the establishment and function of CSN and CRMCs by cell-specific target genes. miR-183C modulates corneal sensitivity and tear production through its regulation of corneal sensory innervation.


Subject(s)
MicroRNAs , Nervous System Physiological Phenomena , Mice , Male , Female , Animals , Cornea/innervation , Trigeminal Ganglion/physiology , MicroRNAs/genetics , Myeloid Cells
9.
Environ Int ; 186: 108577, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521043

ABSTRACT

Male fertility has been declining worldwide especially in countries with high levels of endocrine disrupting chemicals (EDCs). Per- and polyfluorinated alkyl Substances (PFAS) have been classified as EDCs and have been linked to adverse male reproductive health. The mechanisms of these associations and their implications on offspring health remain unknown. The aims of the current study were to assess the effect of PFAS mixtures on the sperm methylome and transcriptional changes in offspring metabolic tissues (i.e., liver and fat). C57BL/6 male mice were exposed to a mixture of PFAS (PFOS, PFOA, PFNA, PFHxS, Genx; 20 µg/L each) for 18-weeks or water as a control. Genome-wide methylation was assessed on F0 epidydimal sperm using reduced representation bisulfite sequencing (RRBS) and Illumina mouse methylation array, while gene expression was assessed by bulk RNA sequencing in 8-week-old offspring derived from unexposed females. PFAS mixtures resulted in 2,861 (RRBS) and 83 (Illumina) sperm DMRs (q < 0.05). Functional enrichment revealed that PFAS-induced sperm DMRs were associated with behavior and developmental pathways in RRBS, while Illumina DMRs were related to lipid metabolism and cell signaling. Additionally, PFAS mixtures resulted in 40 and 53 differentially expressed genes (DEGs) in the liver and fat of males, and 9 and 31 DEGs in females, respectively. Functional enrichment of DEGs revealed alterations in cholesterol metabolism and mitotic cell cycle regulation in the liver and myeloid leukocyte migration in fat of male offspring, while in female offspring, erythrocyte development and carbohydrate catabolism were affected in fat. Our results demonstrate that exposure to a mixture of legacy and newly emerging PFAS chemicals in adult male mice result in aberrant sperm methylation and altered gene expression of offspring liver and fat in a sex-specific manner. These data indicate that preconception PFAS exposure in males can be transmitted to affect phenotype in the next generation.


Subject(s)
DNA Methylation , Fluorocarbons , Liver , Mice, Inbred C57BL , Spermatozoa , Transcriptome , Animals , Male , Liver/drug effects , Liver/metabolism , Spermatozoa/drug effects , Mice , Transcriptome/drug effects , Fluorocarbons/toxicity , Female , DNA Methylation/drug effects , Endocrine Disruptors/toxicity , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Environmental Pollutants/toxicity
10.
Commun Biol ; 6(1): 516, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179352

ABSTRACT

Vascular adhesion molecules play an important role in various immunological disorders, particularly in cancers. However, little is known regarding the role of these adhesion molecules in proliferative retinopathies. We observed that IL-33 regulates VCAM-1 expression in human retinal endothelial cells and that genetic deletion of IL-33 reduces hypoxia-induced VCAM-1 expression and retinal neovascularization in C57BL/6 mice. We found that VCAM-1 via JunB regulates IL-8 promoter activity and expression in human retinal endothelial cells. In addition, our study outlines the regulatory role of VCAM-1-JunB-IL-8 signaling on retinal endothelial cell sprouting and angiogenesis. Our RNA sequencing results show an induced expression of CXCL1 (a murine functional homolog of IL-8) in the hypoxic retina, and intravitreal injection of VCAM-1 siRNA not only decreases hypoxia-induced VCAM-1-JunB-CXCL1 signaling but also reduces OIR-induced sprouting and retinal neovascularization. These findings suggest that VCAM-1-JunB-IL-8 signaling plays a crucial role in retinal neovascularization, and its antagonism might provide an advanced treatment option for proliferative retinopathies.


Subject(s)
Retinal Neovascularization , Animals , Humans , Mice , Retinal Neovascularization/genetics , Retinal Neovascularization/metabolism , Retinal Neovascularization/pathology , Vascular Cell Adhesion Molecule-1/genetics , Vascular Cell Adhesion Molecule-1/metabolism , Interleukin-33/metabolism , Interleukin-8/genetics , Interleukin-8/metabolism , Endothelial Cells/metabolism , Mice, Inbred C57BL , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Hypoxia/metabolism , Chemokine CXCL1/metabolism , Transcription Factors/metabolism
11.
Am J Cancer Res ; 13(10): 4678-4692, 2023.
Article in English | MEDLINE | ID: mdl-37970367

ABSTRACT

Triple-negative breast cancer (TNBC) is an aggressive form of breast cancer, and the majority of TNBC lacks targeted therapies. Previous studies have shown that TNBC cells are highly sensitive to TNF-related apoptosis-inducing ligand (TRAIL), making it a potentially viable treatment option for TNBC. However, the development of TRAIL resistance limits its potential for clinical use, and the underlying mechanisms are not fully understood. To better understand the mechanism of resistance to TRAIL, we performed RNA sequencing to identify the candidates that are responsible for resistance to TRAIL in two previously established TRAIL-resistant MDA231 and SUM159 cells. This approach led us to identify differentially expressed genes (DEGs) and pathways in TRAIL-resistant MDA231 and SUM159 cells compared to their TRAIL-sensitive counterparts. We showed that several DEGs and pathways were associated with inflammation in TRAIL-resistant cells, including IL-1α and IL6. By downregulating IL-1α and IL6 expression, we showed that TRAIL sensitivity can be significantly restored in TRAIL-resistant cells. Therefore, this study identifies a mechanism by which the inflammation pathway promotes TRAIL resistance, which could be targeted for enhancing TRAIL-based therapies in TNBC cells.

12.
Ocul Surf ; 30: 17-41, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37536656

ABSTRACT

PURPOSE: The conserved miR-183/96/182 cluster (miR-183C) regulates both corneal sensory innervation and corneal resident immune cells (CRICs). This study is to uncover its role in CRICs and in shaping the corneal cellular landscape at a single-cell (sc) level. METHODS: Corneas of naïve, young adult [2 and 6 months old (mo)], female miR-183C knockout (KO) mice and wild-type (WT) littermates were harvested and dissociated into single cells. Dead cells were removed using a Dead Cell Removal kit. CD45+ CRICs were enriched by Magnetic Activated Cell Sorting (MACS). scRNA libraries were constructed and sequenced followed by comprehensive bioinformatic analyses. RESULTS: The composition of major cell types of the cornea stays relatively stable in WT mice from 2 to 6 mo, however the compositions of subtypes of corneal cells shift with age. Inactivation of miR-183C disrupts the stability of the major cell-type composition and age-related transcriptomic shifts of subtypes of corneal cells. The diversity of CRICs is enhanced with age. Naïve mouse cornea contains previously-unrecognized resident fibrocytes and neutrophils. Resident macrophages (ResMφ) adopt cornea-specific function by expressing abundant extracellular matrix (ECM) and ECM organization-related genes. Naïve cornea is endowed with partially-differentiated proliferative ResMφ and contains microglia-like Mφ. Resident lymphocytes, including innate lymphoid cells (ILCs), NKT and γδT cells, are the major source of innate IL-17a. miR-183C limits the diversity and polarity of ResMφ. CONCLUSION: miR-183C serves as a checkpoint for CRICs and imposes a global regulation of the cellular landscape of the cornea.


Subject(s)
Cornea , Immunity, Innate , MicroRNAs , Animals , Female , Mice , Cornea/metabolism , Immunity, Innate/genetics , Lymphocytes , Macrophages , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics
13.
Front Cell Dev Biol ; 11: 1233269, 2023.
Article in English | MEDLINE | ID: mdl-37745292

ABSTRACT

Background: Adult zebrafish are capable of photoreceptor (PR) regeneration following acute phototoxic lesion (AL). We developed a chronic low light (CLL) exposure model that more accurately reflects chronic PR degeneration observed in many human retinal diseases. Methods: Here, we characterize the morphological and transcriptomic changes associated with acute and chronic models of PR degeneration at 8 time-points over a 28-day window using immunohistochemistry and 3'mRNA-seq. Results: We first observed a differential sensitivity of rod and cone PRs to CLL. Next, we found no evidence for Müller glia (MG) gliosis or regenerative cell-cycle re-entry in the CLL model, which is in contrast to the robust gliosis and proliferative response from resident MG in the AL model. Differential responses of microglia between the models was also observed. Transcriptomic comparisons between the models revealed gene-specific networks of PR regeneration and degeneration, including genes that are activated under conditions of chronic PR stress. Finally, we showed that CLL is at least partially reversible, allowing for rod and cone outer segment outgrowth and replacement of rod cell nuclei via an apparent upregulation of the existing rod neurogenesis mechanism. Discussion: Collectively, these data provide a direct comparison of the morphological and transcriptomic PR degeneration and regeneration models in zebrafish.

14.
PLoS Genet ; 5(10): e1000680, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19816568

ABSTRACT

The p53 family activates many of the same genes in response to DNA damage. Because p63 and p73 have structural differences from p53 and play distinct biological functions in development and metastasis, it is likely that they activate a unique transcriptional network. Therefore, we performed a genome-wide analysis using cells lacking the p53 family members after treatment with DNA damage. We identified over 100 genes involved in multiple pathways that were uniquely regulated by p63 or p73, and not p53. Further validation indicated that BRCA2, Rad51, and mre11 are direct transcriptional targets of p63 and p73. Additionally, cells deficient for p63 and p73 are impaired in DNA repair and p63+/-;p73+/- mice develop mammary tumors suggesting a novel mechanism whereby p63 and p73 suppress tumorigenesis.


Subject(s)
DNA Repair , DNA-Binding Proteins/genetics , Gene Expression Regulation , Nuclear Proteins/genetics , Phosphoproteins/genetics , Trans-Activators/genetics , Transcriptional Activation/genetics , Tumor Suppressor Proteins/genetics , Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Animals , BRCA2 Protein/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Survival/genetics , Cells, Cultured , Chromatin Immunoprecipitation , Cluster Analysis , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , Immunohistochemistry , MRE11 Homologue Protein , Mice , Nuclear Proteins/metabolism , Phosphoproteins/metabolism , Promoter Regions, Genetic , Rad51 Recombinase/metabolism , Radiation, Ionizing , Trans-Activators/metabolism , Tumor Protein p73 , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Proteins/metabolism
15.
Front Toxicol ; 4: 821116, 2022.
Article in English | MEDLINE | ID: mdl-35615540

ABSTRACT

In this report, we compare the outcomes and limitations of two methods of transcriptomic inquiry on adult zebrafish testes exposed to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during sexual differentiation: conventional or bulk RNA-seq (bulk-seq) and single cell RNA sequencing (scRNA-seq) data. scRNA-seq has emerged as a valuable tool for uncovering cell type-specific transcriptome dynamics which exist in heterogeneous tissue. Our lab previously showed the toxicological value of the scRNA-seq pipeline to characterize the sequelae of TCDD exposure in testes, demonstrating that loss of spermatids and spermatozoa, but not other cell types, contributed to the pathology of infertility in adult male zebrafish exposed during sexual differentiation. To investigate the potential for technical artifacts in scRNA-seq such as cell dissociation effects and reduced transcriptome coverage, we compared bulk-sequenced and scRNA-seq-paired samples from control and TCDD-exposed samples to understand what is gained and lost in scRNA-seq vs bulk-seq, both transcriptomically and toxicologically. We hypothesized that the testes may be sensitive to tissue disruption as they contain multiple cell types under constant division and/or maturation, and that TCDD exposure may mediate the extent of sensitivity. Thus, we sought to understand the extent to which this dissociation impacts the toxicological value of data returned from scRNA-seq. We confirm that the required dissociation of individual cells from intact tissue has a significant impact on gene expression, affecting gene pathways with the potential to confound toxicogenomics studies on exposures if findings are not well-controlled and well-situated in context. Additionally, a common scRNA-seq method using cDNA amplified from the 3' end of mRNA under-detects low-expressing transcripts including transcription factors. We confirm this, and show TCDD-related genes may be overlooked by scRNA-seq, however, this under-detection effect is not mediated by TCDD exposure. Even so, scRNA-seq generally extracted toxicologically relevant information better than the bulk-seq method in the present study. This report aims to inform future experimental design for transcriptomic investigation in the growing field of toxicogenomics by demonstrating the differential information extracted from sequencing cells-despite being from the same tissue and exposure scheme-is influenced by the specific protocol used, with implications for the interpretation of exposure-induced risk.

16.
PNAS Nexus ; 1(3): pgac060, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35799832

ABSTRACT

2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a potent and environmentally persistent endocrine disrupting chemical. Our previous work demonstrated the latent reproductive maladies of early-life TCDD exposure in zebrafish. Zebrafish acutely exposed to low, environmentally relevant levels of TCDD (50 pg/mL) during two windows of sexual differentiation in development (1 hour of exposure at 3 and 7 weeks postfertilization) were later infertile, showed a reduction in sperm, and exhibited gene expression consistent with an altered microenvironment, even months after exposure. Due to the highly heterogeneous cell- type and -stage landscape of the testes, we hypothesized various cell types contribute markedly different profiles toward the pathology of TCDD exposure. To investigate the contributions of the diverse cell types in the adult zebrafish testes to TCDD-induced pathology, we utilized single-cell RNA-seq and the 10x Genomics platform. The method successfully captured every stage of testicular germ cell development. Testes of adult fish exposed during sexual differentiation to TCDD contained sharply decreased populations of late spermatocytes, spermatids, and spermatozoa. Spermatogonia and early spermatocyte populations were, in contrast, enriched following exposure. Pathway analysis of differentially expressed genes supported previous findings that TCDD exposure resulted in male infertility, and suggested this outcome is due to apoptosis of spermatids and spermatozoa, even years after exposure cessation. Increased germ cell apoptosis was confirmed histologically. These results provide support for an environmental exposure explanation of idiopathic male infertility.

17.
Methods Mol Biol ; 2255: 233-239, 2021.
Article in English | MEDLINE | ID: mdl-34033107

ABSTRACT

Bioinformatics tools and resources are valuable for the analysis of data sets focusing on programmed cell death. This chapter discusses methods for the generation of gene sets as well as enrichment analysis using publicly available databases.


Subject(s)
Cell Death , Computational Biology/methods , Gene Expression Profiling , Gene Ontology , Gene Regulatory Networks , Signal Transduction , Databases, Genetic , Humans , Software
18.
Front Cell Dev Biol ; 9: 741514, 2021.
Article in English | MEDLINE | ID: mdl-34790663

ABSTRACT

Following photoreceptors ablation by intense light exposure, adult zebrafish are capable of complete regeneration due to the ability of their Müller glia (MG) to re-enter the cell cycle, creating progenitors that differentiate into new photoreceptors. The majority of previous reports on retinal regeneration focused on the first few days of the regenerative response, which include MG cell-cycle re-entry and progenitor cell proliferation. With this study, we analyzed the full 28-day time-course of regeneration by pairing a detailed morphological/immunological analysis with RNA-seq transcriptional profiling at 8 key time points during retinal regeneration. We observed several novel findings. First, we provide evidence for two separate peaks of MG gliosis, with the secondary gliotic peak occurring after MG cell-cycle re-entry. Second, we highlight a distinct transcriptional shift between 5- and 10-days post lesion that highlights the transition from progenitor proliferation to differentiation into new photoreceptors. Third, we show distinctly different patterns of transcriptional recovery of the photoreceptor opsins at 28 days post lesion. Finally, using differential gene expression analysis, we revealed that the established functional recovery of the retina at 28 days post lesion does not, in fact, return to an undamaged transcriptional state, potentially redefining what the field considers complete regeneration. Together, to our knowledge, this work represents the first histological and transcriptomic map of a 28-day time-course of retinal regeneration in adult zebrafish.

19.
Genes (Basel) ; 12(6)2021 06 14.
Article in English | MEDLINE | ID: mdl-34198629

ABSTRACT

Traumatic brain injuries, a leading cause of death and disability worldwide, are caused by a severe impact to the head that impairs physiological and psychological function. In addition to severity, type and brain area affected, brain injury outcome is also influenced by the biological sex of the patient. Traumatic brain injury triggers accumulation of Tau protein and the subsequent development of Tauopathies, including Alzheimer's disease and Chronic traumatic encephalopathy. Recent studies report differences in Tau network connections between healthy males and females, but the possible role of Tau in sex-dependent outcome to brain injury is unclear. Thus, we aimed to determine if Tau ablation would alleviate sex dependent outcomes in injured flies. We first assessed motor function and survival in tau knock-out flies and observed sex-differences in climbing ability, but no change in locomotor activity in either sex post-injury. Sex differences in survival time were also observed in injured tau deficient flies with a dramatically higher percent of female death within 24 h than males. Additionally, 3'mRNA-Seq studies in isolated fly brains found that tau deficient males show more gene transcript changes than females post-injury. Our results suggest that sex differences in TBI outcome and recovery are not dependent on the presence of Tau in Drosophila.


Subject(s)
Brain Injuries, Traumatic/metabolism , Drosophila Proteins/genetics , tau Proteins/genetics , Animals , Brain/metabolism , Brain Injuries, Traumatic/genetics , Drosophila Proteins/deficiency , Drosophila melanogaster , Female , Male , Movement , Sex Factors , Transcriptome , tau Proteins/deficiency
20.
Brain Behav Immun Health ; 14: 100247, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34589758

ABSTRACT

Exposure to violence (ETV) has been linked to epigenomics mechanisms such as DNA methylation (DNAm). We used epigenetic profiling of blood collected from 32 African American young adult males who lived in Washington DC to determine if changes in DNAm at CpG sites affiliated with nervous and immune system were associated with exposure to violence. Pathway analysis of differentially methylated regions comparing high and low ETV groups revealed an enrichment of gene sets annotated to nervous system and immune ontologies. Many of these genes are known to interact with each other which suggests DNAm alters gene function in the nervous and immune system in response to ETV. Using data from a unique age group, young African American adult males, we provide evidence that lifetime ETV could impact DNA methylation in genes impacted at Central Nervous System and Immune Function sites. METHOD: Methylation analysis was performed on DNA collected from the blood of participants classified with either high or low lifetime ETV. Illumina®MethylationEPIC Beadchips (~850k CpG sites) were processed on the iScan System to examine whole-genome methylation differences. Differentially methylated CpG-sites between high (n â€‹= â€‹19) and low (n â€‹= â€‹13) groups were identified using linear regression with violence and substance abuse as model covariates. Gene ontology analysis was used to identify enrichment categories from probes annotated to the nearest gene. RESULTS: A total of 595 probes (279 hypermethylated; 316 hypomethylated) annotated to 383 genes were considered differentially methylated in association with ETV. Males with high ETV showed elevated methylation in several signaling pathways but were most impacted at Central Nervous System and Immune Function affiliated sites. Eight candidate genes were identified that play important biological roles in stress response to violence with HDAC4 (10%), NR4A3 (11%), NR4A2 (12%), DSCAML1(12%), and ELAVL3 (13%) exhibiting higher levels in the low ETV group and DLGAP1 (10%), SHANK2 (10%), and NRG1(11%) having increased methylation in the high ETV group. These findings suggest that individuals subjected to high ETV may be at risk for poor health outcomes that have not been reported previously.

SELECTION OF CITATIONS
SEARCH DETAIL