Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Cell ; 183(5): 1367-1382.e17, 2020 11 25.
Article in English | MEDLINE | ID: mdl-33160446

ABSTRACT

A safe, effective, and scalable vaccine is needed to halt the ongoing SARS-CoV-2 pandemic. We describe the structure-based design of self-assembling protein nanoparticle immunogens that elicit potent and protective antibody responses against SARS-CoV-2 in mice. The nanoparticle vaccines display 60 SARS-CoV-2 spike receptor-binding domains (RBDs) in a highly immunogenic array and induce neutralizing antibody titers 10-fold higher than the prefusion-stabilized spike despite a 5-fold lower dose. Antibodies elicited by the RBD nanoparticles target multiple distinct epitopes, suggesting they may not be easily susceptible to escape mutations, and exhibit a lower binding:neutralizing ratio than convalescent human sera, which may minimize the risk of vaccine-associated enhanced respiratory disease. The high yield and stability of the assembled nanoparticles suggest that manufacture of the nanoparticle vaccines will be highly scalable. These results highlight the utility of robust antigen display platforms and have launched cGMP manufacturing efforts to advance the SARS-CoV-2-RBD nanoparticle vaccine into the clinic.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , COVID-19/prevention & control , Nanoparticles/chemistry , Protein Domains/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Vaccination , Adolescent , Adult , Aged , Animals , COVID-19/virology , Chlorocebus aethiops , Cohort Studies , Epitopes/immunology , Female , HEK293 Cells , Humans , Macaca nemestrina , Male , Mice, Inbred BALB C , Middle Aged , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , Young Adult
2.
Cell ; 163(7): 1702-15, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26687358

ABSTRACT

The envelope glycoprotein trimer mediates HIV-1 entry into cells. The trimer is flexible, fluctuating between closed and more open conformations and sometimes sampling the fully open, CD4-bound form. We hypothesized that conformational flexibility and transient exposure of non-neutralizing, immunodominant epitopes could hinder the induction of broadly neutralizing antibodies (bNAbs). We therefore modified soluble Env trimers to stabilize their closed, ground states. The trimer variants were indeed stabilized in the closed conformation, with a reduced ability to undergo receptor-induced conformational changes and a decreased exposure of non-neutralizing V3-directed antibody epitopes. In rabbits, the stabilized trimers induced similar autologous Tier-1B or Tier-2 NAb titers to those elicited by the corresponding wild-type trimers but lower levels of V3-directed Tier-1A NAbs. Stabilized, closed trimers might therefore be useful components of vaccines aimed at inducing bNAbs.


Subject(s)
AIDS Vaccines/chemistry , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing , Epitopes/chemistry , HIV Envelope Protein gp41/chemistry , HIV Envelope Protein gp41/genetics , HIV-1 , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/chemistry , Models, Molecular , Mutagenesis , Protein Conformation , Rabbits , env Gene Products, Human Immunodeficiency Virus/chemistry
3.
Nature ; 592(7855): 623-628, 2021 04.
Article in English | MEDLINE | ID: mdl-33762730

ABSTRACT

Influenza vaccines that confer broad and durable protection against diverse viral strains would have a major effect on global health, as they would lessen the need for annual vaccine reformulation and immunization1. Here we show that computationally designed, two-component nanoparticle immunogens2 induce potently neutralizing and broadly protective antibody responses against a wide variety of influenza viruses. The nanoparticle immunogens contain 20 haemagglutinin glycoprotein trimers in an ordered array, and their assembly in vitro enables the precisely controlled co-display of multiple distinct haemagglutinin proteins in defined ratios. Nanoparticle immunogens that co-display the four haemagglutinins of licensed quadrivalent influenza vaccines elicited antibody responses in several animal models against vaccine-matched strains that were equivalent to or better than commercial quadrivalent influenza vaccines, and simultaneously induced broadly protective antibody responses to heterologous viruses by targeting the subdominant yet conserved haemagglutinin stem. The combination of potent receptor-blocking and cross-reactive stem-directed antibodies induced by the nanoparticle immunogens makes them attractive candidates for a supraseasonal influenza vaccine candidate with the potential to replace conventional seasonal vaccines3.


Subject(s)
Broadly Neutralizing Antibodies/immunology , Influenza A virus/classification , Influenza A virus/immunology , Influenza Vaccines/immunology , Influenza, Human/immunology , Influenza, Human/prevention & control , Nanomedicine , Nanoparticles , Animals , Disease Models, Animal , Female , Ferrets/immunology , Ferrets/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Humans , Influenza A Virus, H1N1 Subtype/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza Vaccines/administration & dosage , Influenza Vaccines/chemistry , Influenza, Human/virology , Male , Mice , Mice, Inbred BALB C , Models, Molecular
4.
Proc Natl Acad Sci U S A ; 120(6): e2213765120, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36719917

ABSTRACT

Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.


Subject(s)
Heat-Shock Proteins, Small , Lens, Crystalline , alpha-Crystallins , Humans , alpha-Crystallins/metabolism , Molecular Chaperones/metabolism , Heat-Shock Proteins, Small/metabolism , alpha-Crystallin B Chain/metabolism , Lens, Crystalline/metabolism
5.
J Biol Chem ; 299(6): 104765, 2023 06.
Article in English | MEDLINE | ID: mdl-37121546

ABSTRACT

Influenza hemagglutinin (HA) is a prototypical class 1 viral entry glycoprotein, responsible for mediating receptor binding and membrane fusion. Structures of its prefusion and postfusion forms, embodying the beginning and endpoints of the fusion pathway, have been extensively characterized. Studies probing HA dynamics during fusion have begun to identify intermediate states along the pathway, enhancing our understanding of how HA becomes activated and traverses its conformational pathway to complete fusion. HA is also the most variable, rapidly evolving part of influenza virus, and it is not known whether mechanisms of its activation and fusion are conserved across divergent viral subtypes. Here, we apply hydrogen-deuterium exchange mass spectrometry to compare fusion activation in two subtypes of HA, H1 and H3. Our data reveal subtype-specific behavior in the regions of HA that undergo structural rearrangement during fusion, including the fusion peptide and HA1/HA2 interface. In the presence of an antibody that inhibits the conformational change (FI6v3), we observe that acid-induced dynamic changes near the epitope are dampened, but the degree of protection at the fusion peptide is different for the two subtypes investigated. These results thus provide new insights into variation in the mechanisms of influenza HA's dynamic activation and its inhibition.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Orthomyxoviridae , Humans , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinins , Hydrogen-Ion Concentration , Influenza, Human , Orthomyxoviridae/metabolism , Peptides
6.
Chem Rev ; 122(8): 7562-7623, 2022 04 27.
Article in English | MEDLINE | ID: mdl-34493042

ABSTRACT

Solution-phase hydrogen/deuterium exchange (HDX) coupled to mass spectrometry (MS) is a widespread tool for structural analysis across academia and the biopharmaceutical industry. By monitoring the exchangeability of backbone amide protons, HDX-MS can reveal information about higher-order structure and dynamics throughout a protein, can track protein folding pathways, map interaction sites, and assess conformational states of protein samples. The combination of the versatility of the hydrogen/deuterium exchange reaction with the sensitivity of mass spectrometry has enabled the study of extremely challenging protein systems, some of which cannot be suitably studied using other techniques. Improvements over the past three decades have continually increased throughput, robustness, and expanded the limits of what is feasible for HDX-MS investigations. To provide an overview for researchers seeking to utilize and derive the most from HDX-MS for protein structural analysis, we summarize the fundamental principles, basic methodology, strengths and weaknesses, and the established applications of HDX-MS while highlighting new developments and applications.


Subject(s)
Deuterium Exchange Measurement , Hydrogen Deuterium Exchange-Mass Spectrometry , Deuterium , Deuterium Exchange Measurement/methods , Hydrogen/chemistry , Mass Spectrometry/methods , Proteins/chemistry
7.
Nat Methods ; 16(7): 595-602, 2019 07.
Article in English | MEDLINE | ID: mdl-31249422

ABSTRACT

Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a powerful biophysical technique being increasingly applied to a wide variety of problems. As the HDX-MS community continues to grow, adoption of best practices in data collection, analysis, presentation and interpretation will greatly enhance the accessibility of this technique to nonspecialists. Here we provide recommendations arising from community discussions emerging out of the first International Conference on Hydrogen-Exchange Mass Spectrometry (IC-HDX; 2017). It is meant to represent both a consensus viewpoint and an opportunity to stimulate further additions and refinements as the field advances.


Subject(s)
Deuterium Exchange Measurement/methods , Mass Spectrometry/methods , Data Analysis , Hydrogen-Ion Concentration
8.
J Biol Chem ; 294(3): 783-793, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30459234

ABSTRACT

SspH/IpaH bacterial effector E3 ubiquitin (Ub) ligases, unrelated in sequence or structure to eukaryotic E3s, are utilized by a wide variety of Gram-negative bacteria during pathogenesis. These E3s function in a eukaryotic environment, utilize host cell E2 ubiquitin-conjugating enzymes of the Ube2D family, and target host proteins for ubiquitylation. Despite several crystal structures, details of Ube2D∼Ub binding and the mechanism of ubiquitin transfer are poorly understood. Here, we show that the catalytic E3 ligase domain of SspH1 can be divided into two subdomains: an N-terminal subdomain that harbors the active-site cysteine and a C-terminal subdomain containing the Ube2D∼Ub-binding site. SspH1 mutations designed to restrict subdomain motions show rapid formation of an E3∼Ub intermediate, but impaired Ub transfer to substrate. NMR experiments using paramagnetic spin labels reveal how SspH1 binds Ube2D∼Ub and targets the E2∼Ub active site. Unexpectedly, hydrogen/deuterium exchange MS shows that the E2∼Ub-binding region is dynamic but stabilized in the E3∼Ub intermediate. Our results support a model in which both subunits of an Ube2D∼Ub clamp onto a dynamic region of SspH1, promoting an E3 conformation poised for transthiolation. A conformational change is then required for Ub transfer from E3∼Ub to substrate.


Subject(s)
Bacterial Proteins/chemistry , Salmonella/enzymology , Ubiquitin-Protein Ligases/chemistry , Ubiquitination , Amino Acid Substitution , Bacterial Proteins/genetics , Catalysis , Mutation, Missense , Protein Domains , Salmonella/genetics , Ubiquitin-Protein Ligases/genetics
9.
Anal Chem ; 92(14): 9830-9837, 2020 07 21.
Article in English | MEDLINE | ID: mdl-32569457

ABSTRACT

Hydrogen-deuterium exchange mass spectrometry (HDX-MS) is a powerful tool for protein structure analysis that is well suited for biotherapeutic development and characterization. Because HDX is strongly dependent on solution conditions, even small variations in temperature or pH can have a pronounced effect on the observed kinetics that can manifest in significant run-to-run variability and compromise reproducibility. Recent attention has been given to the development of internal exchange reporters (IERs), which directly monitor changes to exchange reaction conditions. However, the currently available small peptide IERs are only capable of sampling a very narrow temporal window and are understood to exhibit complex solution dependent exchange behavior. Here we demonstrate the use of imidazolium carbon acids as superior IERs for HDX-MS. These compounds exhibit predictable exchange behavior under a wide variety of reaction conditions, are highly stable, and can be readily modified to exchange over a broad temporal window. The use of these compounds as IERs for solution based HDX-MS could considerably extend the utility of the technique by allowing for more robust empirical exchange correction, thereby improving reproducibility.


Subject(s)
Hydrogen Deuterium Exchange-Mass Spectrometry/methods , Imidazolines/chemistry , Animals , Deuterium/chemistry , Hydrogen/chemistry , Hydrogen-Ion Concentration , Proteins/chemistry
10.
Anal Chem ; 92(11): 7725-7732, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32368904

ABSTRACT

Mass spectrometry (MS) has become a primary tool for identifying and quantifying biological molecules. In combination with other orthogonal techniques, such as gas-phase hydrogen/deuterium exchange (gHDX), MS is also capable of probing the structure of ions. However, gHDX kinetics can depend strongly on many factors, including laboratory temperature, instrumental conditions, and instrument platform selection. These effects can lead to high variability with gHDX measurements, which has hindered the broader adoption of gHDX for structural MS. Here we introduce an approach for standardizing gHDX measurements using cosampled standards. Quantifying the exchange kinetics for analytes relative to the exchange kinetics of the standards results in greater accuracy and precision than the underlying absolute measurements. The standardization was found to be effective for several types of analytes including small molecules and intact proteins. A subset of analytes showed deviations in their standardized exchange profiles that are attributed to field heating and the concomitant conformational isomerization. Inclusion of helium during the gHDX process for collisional cooling helps mitigate such variations in exchange kinetics related to ion heating. We anticipate that the outcomes of this research will enable the broader use of gHDX in MS-based workflows for molecular identification and isomer differentiation.


Subject(s)
Deuterium Exchange Measurement , Organic Chemicals/analysis , Proteins/analysis , Deuterium Exchange Measurement/standards , Kinetics , Mass Spectrometry/standards , Molecular Structure
11.
J Biol Chem ; 293(17): 6297-6307, 2018 04 27.
Article in English | MEDLINE | ID: mdl-29511086

ABSTRACT

P-glycoprotein (P-gp) is a highly substrate-promiscuous efflux transporter that plays a critical role in drug disposition. P-gp utilizes ATP hydrolysis by nucleotide-binding domains (NBDs) to drive transitions between inward-facing (IF) conformations that bind drugs and outward-facing (OF) conformations that release them to the extracellular solution. However, the details of the protein dynamics within either macroscopic IF or OF conformation remain uncharacterized, and the functional role of local dynamics has not been determined. In this work we measured the local dynamics of the IF state of P-gp in lipid nanodiscs and in detergent solution by hydrogen-deuterium (H/D) exchange MS. We observed "EX1 exchange kinetics," or bimodal kinetics, for several peptides distributed in both NBDs, particularly for P-gp in the lipid nanodiscs. Remarkably, the EX1 kinetics occurred on several time scales, ranging from seconds to hours, suggesting highly complex, and correlated, motions. The results indicate at least three distinct conformational states in the ligand-free P-gp and suggest a rough conformational landscape. Addition of excess ATP and vanadate, to favor the OF conformations, caused a generalized, but modest, decrease in H/D exchange throughout the NBDs and slowed the EX1 kinetic transitions of several peptides. The functional implications of the results are consistent with the possibility that conformational selection provides a source of substrate promiscuity.


Subject(s)
Lipids/chemistry , Micelles , Nanostructures/chemistry , ATP Binding Cassette Transporter, Subfamily B/chemistry , Adenosine Triphosphate/chemistry , Humans , Kinetics , Protein Conformation , Vanadates/chemistry
12.
Glycobiology ; 29(12): 847-860, 2019 11 20.
Article in English | MEDLINE | ID: mdl-31361007

ABSTRACT

Chondroitin sulfates (CS) are long, negatively charged, unbranched glycosaminoglycan (GAG) chains attached to CS-proteoglycan (CSPG) core proteins that comprise the glycan component in both loose interstitial extracellular matrices (ECMs) and in rigid, structured perineuronal net (PNN) scaffolds within the brain. As aberrant CS-PNN formations have been linked to a range of pathological states, including Alzheimer's disease (AD) and schizophrenia, the analysis of CS-GAGs in brain tissue at the disaccharide level has great potential to enhance disease diagnosis and prognosis. Two mass-spectrometry (MS)-based approaches were adapted to detect CS disaccharides from minute fixed tissue samples with low picomolar sensitivity and high reproducibility. The first approach employed a straightforward, quantitative direct infusion (DI)-tandem mass spectrometry (MS/MS) technique to determine the percentages of Δ4S- and Δ6S-CS disaccharides within the 4S/6S-CS ratio, while the second used a comprehensive liquid chromatography (LC)-MS/MS technique to determine the relative percentages of Δ0S-, Δ4S-, Δ6S-, Δ4S6S-CS and Δ2S6S-CS disaccharides, with internal validation by full chondroitin lyase activity. The quantitative accuracy of the five primary biologically relevant CS disaccharides was validated using a developmental time course series in fixed rodent brain tissue. We then analyzed the CS disaccharide composition in formalin-fixed human brain tissue, thus providing the first quantitative report of CS sulfation patterns in the human brain. The ability to comprehensively analyze the CS disaccharide composition from fixed brain tissue provides a means with which to identify alterations in the CS-GAG composition in relation to the onset and/or progression of neurological diseases.


Subject(s)
Brain Chemistry , Chondroitin Sulfates/analysis , Animals , Female , Humans , Male , Mice , Mice, Inbred C57BL , Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry
13.
Chem Res Toxicol ; 32(12): 2488-2498, 2019 12 16.
Article in English | MEDLINE | ID: mdl-31799839

ABSTRACT

Cytochrome P450 4B1 (CYP4B1) has been explored as a candidate enzyme in suicide gene systems for its ability to bioactivate the natural product 4-ipomeanol (IPO) to a reactive species that causes cytotoxicity. However, metabolic limitations of IPO necessitate discovery of new "pro-toxicant" substrates for CYP4B1. In the present study, we examined a series of synthetically facile N-alkyl-3-furancarboxamides for cytotoxicity in HepG2 cells expressing CYP4B1. This compound series maintains the furan warhead of IPO while replacing its alcohol group with alkyl chains of varying length (C1-C8). Compounds with C3-C6 carbon chain lengths showed similar potency to IPO (LD50 ≈ 5 µM). Short chain analogs (<3 carbons) and long chain analogs (>6 carbons) exhibited reduced toxicity, resulting in a parabolic relationship between alkyl chain length and cytotoxicity. A similar parabolic relationship was observed between alkyl chain length and reactive intermediate formation upon trapping of the putative enedial as a stable pyrrole adduct in incubations with purified recombinant rabbit CYP4B1 and common physiological nucleophiles. These parabolic relationships reflect the lower affinity of shorter chain compounds for CYP4B1 and increased ω-hydroxylation of the longer chain compounds by the enzyme. Furthermore, modest time-dependent inhibition of CYP4B1 by N-pentyl-3-furancarboxamide was completely abolished when trapping agents were added, demonstrating escape of reactive intermediates from the enzyme after bioactivation. An insulated CYP4B1 active site may explain the rarely observed direct correlation between adduct formation and cell toxicity reported here.


Subject(s)
Amides/toxicity , Aryl Hydrocarbon Hydroxylases/metabolism , Furans/toxicity , Activation, Metabolic , Amides/chemical synthesis , Amides/metabolism , Animals , Aryl Hydrocarbon Hydroxylases/antagonists & inhibitors , Aryl Hydrocarbon Hydroxylases/chemistry , Catalytic Domain , Cytochrome P-450 Enzyme Inhibitors/chemical synthesis , Cytochrome P-450 Enzyme Inhibitors/metabolism , Cytochrome P-450 Enzyme Inhibitors/toxicity , Furans/chemical synthesis , Furans/metabolism , Hep G2 Cells , Humans , Hydroxylation , Kinetics , Molecular Docking Simulation , Molecular Structure , Protein Binding , Rabbits , Structure-Activity Relationship , Terpenes/chemistry , Terpenes/toxicity
14.
Anal Chem ; 90(20): 11883-11891, 2018 10 16.
Article in English | MEDLINE | ID: mdl-30216047

ABSTRACT

Structural characterization of carbohydrates by mass spectrometry necessitates a detailed understanding of their gas phase behavior, particularly for protonated carbohydrates that can undergo complex structural rearrangements during fragmentation. Here we utilize tandem mass spectrometry, isotopic labeling, gas-phase hydrogen/deuterium exchange, and ion mobility measurements to characterize structures of the various product ions of protonated N-acetylhexosamines. Following the facile loss of the reducing end hydroxyl group, we identify two primary fragmentation pathways. Detailed mapping of each step in the fragmentation pathway provides new insight into the mechanisms that drive collision-induced dissociation of protonated carbohydrates. Several of the smaller fragment ions are mixtures of structural isomers, and the relative distributions of these structures reveals information about the stereochemistry of the precursor molecule.


Subject(s)
Hexosamines/chemistry , Protons , Deuterium Exchange Measurement , Molecular Conformation , Tandem Mass Spectrometry
15.
J Virol ; 91(21)2017 11 01.
Article in English | MEDLINE | ID: mdl-28814519

ABSTRACT

Gut-homing α4ß7high CD4+ T lymphocytes have been shown to be preferentially targeted by human immunodeficiency virus type 1 (HIV-1) and are implicated in HIV-1 pathogenesis. Previous studies demonstrated that HIV-1 envelope protein gp120 binds and signals through α4ß7 and that this likely contributes to the infection of α4ß7high T cells and promotes cell-to-cell virus transmission. Structures within the second variable loop (V2) of gp120, including the tripeptide motif LDV/I, are thought to mediate gp120-α4ß7 binding. However, lack of α4ß7 binding has been reported in gp120 proteins containing LDV/I, and the precise determinants of gp120-α4ß7 binding are not fully defined. In this work, we report the novel finding that fibronectins mediate indirect gp120-α4ß7 interactions. We show that Chinese hamster ovary (CHO) cells used to express recombinant gp120 produced fibronectins and other extracellular matrix proteins that copurified with gp120. CHO cell fibronectins were able to mediate the binding of a diverse panel of gp120 proteins to α4ß7 in an in vitro cell binding assay. The V2 loop was not required for fibronectin-mediated binding of gp120 to α4ß7, nor did V2-specific antibodies block this interaction. Removal of fibronectin through anion-exchange chromatography abrogated V2-independent gp120-α4ß7 binding. Additionally, we showed a recombinant human fibronectin fragment mediated gp120-α4ß7 interactions similarly to CHO cell fibronectin. These findings provide an explanation for the apparently contradictory observations regarding the gp120-α4ß7 interaction and offer new insights into the potential role of fibronectin and other extracellular matrix proteins in HIV-1 biology.IMPORTANCE Immune tissues within the gut are severely damaged by HIV-1, and this plays an important role in the development of AIDS. Integrin α4ß7 plays a major role in the trafficking of lymphocytes, including CD4+ T cells, into gut lymphoid tissues. Previous reports indicate that some HIV-1 gp120 envelope proteins bind to and signal through α4ß7, which may help explain the preferential infection of gut CD4+ T cells. In this study, we demonstrate that extracellular matrix proteins can mediate interactions between gp120 and α4ß7 This suggests that the extracellular matrix may be an important mediator of HIV-1 interaction with α4ß7-expressing cells. These findings provide new insight into the nature of HIV-1-α4ß7 interactions and how these interactions may represent targets for therapeutic intervention.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Extracellular Matrix Proteins/metabolism , HIV Envelope Protein gp120/metabolism , HIV Infections/metabolism , HIV-1/physiology , Integrins/metabolism , Animals , CD4-Positive T-Lymphocytes/virology , CHO Cells , Cricetinae , Cricetulus , Fibronectins/metabolism , HIV Infections/virology , Humans , Protein Binding
16.
PLoS Pathog ; 12(9): e1005864, 2016 09.
Article in English | MEDLINE | ID: mdl-27627672

ABSTRACT

We have investigated the immunogenicity in rabbits of native-like, soluble, recombinant SOSIP.664 trimers based on the env genes of four isolates of human immunodeficiency virus type 1 (HIV-1); specifically BG505 (clade A), B41 (clade B), CZA97 (clade C) and DU422 (clade C). The various trimers were delivered either simultaneously (as a mixture of clade A + B trimers) or sequentially over a 73-week period. Autologous, Tier-2 neutralizing antibody (NAb) responses were generated to the clade A and clade B trimers in the bivalent mixture. When delivered as boosting immunogens to rabbits immunized with the clade A and/or clade B trimers, the clade C trimers also generated autologous Tier-2 NAb responses, the CZA97 trimers doing so more strongly and consistently than the DU422 trimers. The clade C trimers also cross-boosted the pre-existing NAb responses to clade A and B trimers. We observed heterologous Tier-2 NAb responses albeit inconsistently, and with limited overall breath. However, cross-neutralization of the clade A BG505.T332N virus was consistently observed in rabbits immunized only with clade B trimers and then boosted with clade C trimers. The autologous NAbs induced by the BG505, B41 and CZA97 trimers predominantly recognized specific holes in the glycan shields of the cognate virus. The shared location of some of these holes may account for the observed cross-boosting effects and the heterologous neutralization of the BG505.T332N virus. These findings will guide the design of further experiments to determine whether and how multiple Env trimers can together induce more broadly neutralizing antibody responses.


Subject(s)
HIV Antibodies/immunology , HIV Infections/prevention & control , HIV-1/immunology , AIDS Vaccines/immunology , Animals , Antibodies, Neutralizing/immunology , Female , Glycoproteins/immunology , HIV Infections/virology , Humans , Immunization , Protein Multimerization , Rabbits , Recombinant Proteins , env Gene Products, Human Immunodeficiency Virus/genetics
17.
Proc Natl Acad Sci U S A ; 112(41): E5567-74, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26385969

ABSTRACT

Photoprotective mechanisms are of fundamental importance for the survival of photosynthetic organisms. In cyanobacteria, the orange carotenoid protein (OCP), when activated by intense blue light, binds to the light-harvesting antenna and triggers the dissipation of excess captured light energy. Using a combination of small angle X-ray scattering (SAXS), X-ray hydroxyl radical footprinting, circular dichroism, and H/D exchange mass spectrometry, we identified both the local and global structural changes in the OCP upon photoactivation. SAXS and H/D exchange data showed that global tertiary structural changes, including complete domain dissociation, occur upon photoactivation, but with alteration of secondary structure confined to only the N terminus of the OCP. Microsecond radiolytic labeling identified rearrangement of the H-bonding network associated with conserved residues and structural water molecules. Collectively, these data provide experimental evidence for an ensemble of local and global structural changes, upon activation of the OCP, that are essential for photoprotection.


Subject(s)
Bacterial Proteins/chemistry , Models, Molecular , Synechocystis/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary
18.
Anal Chem ; 89(8): 4737-4742, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28304155

ABSTRACT

The structural diversity of carbohydrates presents a major challenge for glycobiology and the analysis of glycoconjugates. Mass spectrometry has become a primary tool for glycan analysis thanks to its speed and sensitivity, but the information content regarding the glycan structure of protonated glycoconjugates is hindered by the inability to differentiate linkage and stereoisomers. Here, we examine a variety of protonated carbohydrate structures by gas-phase hydrogen/deuterium exchange (HDX) to discover that the exchange rates are distinct for isomeric carbohydrates with even subtle structural differences. By incorporating an internal exchange standard, HDX could effectively distinguish all linkage and stereoisomers that were examined and presents a mass spectrometry-based approach for glycan structural analysis with immense potential.

19.
J Virol ; 90(20): 9224-36, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27489265

ABSTRACT

UNLABELLED: The envelope glycoprotein (Env) is the major target for HIV-1 broadly neutralizing antibodies (bNAbs). One of the mechanisms that HIV has evolved to escape the host's immune response is to mask conserved epitopes on Env with dense glycosylation. Previous studies have shown that the removal of a particular conserved glycan at N197 increases the neutralization sensitivity of the virus to antibodies targeting the CD4 binding site (CD4bs), making it a site of significant interest from the perspective of vaccine design. At present, the structural consequences that result from the removal of the N197 glycan have not been characterized. Using native-like SOSIP trimers, we examine the effects on antigenicity and local structural dynamics resulting from the removal of this glycan. A large increase in the binding of CD4bs and V3-targeting antibodies is observed for the N197Q mutant in trimeric Env, while no changes are observed with monomeric gp120. While the overall structure and thermostability are not altered, a subtle increase in the flexibility of the variable loops at the trimeric interface of adjacent protomers is evident in the N197Q mutant by hydrogen-deuterium exchange mass spectrometry. Structural modeling of the glycan chains suggests that the spatial occupancy of the N197 glycan leads to steric clashes with CD4bs antibodies in the Env trimer but not monomeric gp120. Our results indicate that the removal of the N197 glycan enhances the exposure of relevant bNAb epitopes on Env with a minimal impact on the overall trimeric structure. These findings present a simple modification for enhancing trimeric Env immunogens in vaccines. IMPORTANCE: The HIV-1 Env glycoprotein presents a dense patchwork of host cell-derived N-linked glycans. This so-called glycan shield is considered to be a major protective mechanism against immune recognition. While the positions of many N-linked glycans are isolate specific, some are highly conserved and are believed to play key functional roles. In this study, we examine the conserved, CD4 binding site-proximal N197 glycan and demonstrate that its removal both facilitates neutralizing antibody access to the CD4 binding site and modestly impacts the structural dynamics at the trimer crown without drastically altering global Env trimer stability. This indicates that surgical glycosylation site modification may be an effective way of sculpting epitope presentation in Env-based vaccines.


Subject(s)
Binding Sites/immunology , CD4 Antigens/immunology , Polysaccharides/immunology , env Gene Products, Human Immunodeficiency Virus/immunology , AIDS Vaccines/immunology , Antibodies, Neutralizing/immunology , Cell Line , Epitopes/immunology , Glycoproteins/immunology , Glycosylation , HEK293 Cells , HIV Antibodies/immunology , HIV Envelope Protein gp120/immunology , HIV-1 , Humans
20.
J Virol ; 90(20): 9471-82, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27512064

ABSTRACT

UNLABELLED: Soluble forms of trimeric HIV-1 envelope glycoprotein (Env) have long been sought as immunogens and as reagents for analysis of Env structure and function. Isolation of trimers that mimic native Env, derived from diverse viruses, however, represents a major challenge. Thus far, the most promising native-like (NL) structures have been obtained by engineering trimer-stabilizing mutations, termed SOSIP, into truncated Env sequences. However, the abundances of NL trimeric conformers vary among Envs, necessitating purification by monoclonal antibodies (MAbs) like PGT145, which target specific epitopes. To surmount this inherent limitation, we developed an approach that uses lectin affinity chromatography, ion-exchange chromatography, hydrophobic-interaction chromatography (HIC), and size exclusion chromatography (SEC) to isolate NL trimers from nonnative Env species. We validated this method with SOSIP trimers from HIV-1 clades A and B. Analyses by SEC, blue native PAGE, SDS-PAGE, and dynamic light scattering indicated that the resulting material was homogeneous (>95% pure), fully cleaved, and of the appropriate molecular weight and size for SOSIP trimers. Negative-stain electron microscopy further demonstrated that our preparations were composed of NL trimeric structures. By hydrogen/deuterium-exchange mass spectrometry, these HIC-pure trimers exhibited structural organization consistent with NL trimers and inconsistent with profiles seen in nonnative Envs. Screened for antigenicity, some Envs, like BS208.b1 and KNH1144 T162A, did not present the glycan/quaternary structure-dependent epitope for PGT145 binding, suggesting that these SOSIPs would be challenging to isolate by existing MAb affinity methods. By selecting based on biochemical rather than antigenic properties, our method offers an epitope-independent alternative to MAbs for isolation of NL Env trimers. IMPORTANCE: The production and purification of diverse soluble Env trimers that maintain native-like (NL) structure present technical challenges that must be overcome in order to advance vaccine development and provide reagents for HIV research. Low levels of NL trimer expression amid heterogeneous Env conformers, even with the addition of stabilizing mutations, have presented a major challenge. In addition, it has been difficult to separate the NL trimers from these heterogeneous mixtures. While MAbs with specificity for quaternary NL trimer epitopes have provided one approach to purifying the desirable species, such methods are dependent on the Env displaying the proper epitope. In addition, MAb affinity chromatography can be expensive, the necessary MAb may be in limited supply, and large-scale purification may not be feasible. Our method based on biochemical separation techniques offers an epitope-independent approach to purification of NL trimers with general application to diverse Envs.


Subject(s)
Antigens, Viral/immunology , Epitopes/chemistry , HIV-1/chemistry , env Gene Products, Human Immunodeficiency Virus/chemistry , AIDS Vaccines/immunology , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cell Line , Chromatography, Affinity/methods , Chromatography, Ion Exchange/methods , Epitopes/immunology , Genes, env/immunology , HIV Antibodies/immunology , HIV-1/immunology , Humans , Protein Multimerization/immunology , env Gene Products, Human Immunodeficiency Virus/immunology
SELECTION OF CITATIONS
SEARCH DETAIL