Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
1.
Nat Immunol ; 24(11): 1825-1838, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735593

ABSTRACT

Noncoding genetic variation drives phenotypic diversity, but underlying mechanisms and affected cell types are incompletely understood. Here, investigation of effects of natural genetic variation on the epigenomes and transcriptomes of Kupffer cells derived from inbred mouse strains identified strain-specific environmental factors influencing Kupffer cell phenotypes, including leptin signaling in Kupffer cells from a steatohepatitis-resistant strain. Cell-autonomous and non-cell-autonomous effects of genetic variation were resolved by analysis of F1 hybrid mice and cells engrafted into an immunodeficient host. During homeostasis, non-cell-autonomous trans effects of genetic variation dominated control of Kupffer cells, while strain-specific responses to acute lipopolysaccharide injection were dominated by actions of cis-acting effects modifying response elements for lineage-determining and signal-dependent transcription factors. These findings demonstrate that epigenetic landscapes report on trans effects of genetic variation and serve as a resource for deeper analyses into genetic control of transcription in Kupffer cells and macrophages in vitro.


Subject(s)
Kupffer Cells , Transcriptome , Mice , Animals , Epigenome , Mice, Inbred C57BL , Genetic Variation
2.
Nucleic Acids Res ; 51(15): e80, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37403796

ABSTRACT

Cis-regulatory elements (CREs) can be classified by the shapes of their transcription start site (TSS) profiles, which are indicative of distinct regulatory mechanisms. Massively parallel reporter assays (MPRAs) are increasingly being used to study CRE regulatory mechanisms, yet the degree to which MPRAs replicate individual endogenous TSS profiles has not been determined. Here, we present a new low-input MPRA protocol (TSS-MPRA) that enables measuring TSS profiles of episomal reporters as well as after lentiviral reporter chromatinization. To sensitively compare MPRA and endogenous TSS profiles, we developed a novel dissimilarity scoring algorithm (WIP score) that outperforms the frequently used earth mover's distance on experimental data. Using TSS-MPRA and WIP scoring on 500 unique reporter inserts, we found that short (153 bp) MPRA promoter inserts replicate the endogenous TSS patterns of ∼60% of promoters. Lentiviral reporter chromatinization did not improve fidelity of TSS-MPRA initiation patterns, and increasing insert size frequently led to activation of extraneous TSS in the MPRA that are not active in vivo. We discuss the implications of our findings, which highlight important caveats when using MPRAs to study transcription mechanisms. Finally, we illustrate how TSS-MPRA and WIP scoring can provide novel insights into the impact of transcription factor motif mutations and genetic variants on TSS patterns and transcription levels.


Subject(s)
Gene Expression Regulation , Regulatory Sequences, Nucleic Acid , Transcription Initiation Site , Promoter Regions, Genetic , Transcription Factors/genetics , High-Throughput Nucleotide Sequencing
3.
Proc Natl Acad Sci U S A ; 119(16): e2117807119, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35412912

ABSTRACT

Zinc deficiency is commonly attributed to inadequate absorption of the metal. Instead, we show that body zinc stores in Drosophila melanogaster depend on tryptophan consumption. Hence, a dietary amino acid regulates zinc status of the whole insect­a finding consistent with the widespread requirement of zinc as a protein cofactor. Specifically, the tryptophan metabolite kynurenine is released from insect fat bodies and induces the formation of zinc storage granules in Malpighian tubules, where 3-hydroxykynurenine and xanthurenic acid act as endogenous zinc chelators. Kynurenine functions as a peripheral zinc-regulating hormone and is converted into a 3-hydroxykynurenine­zinc­chloride complex, precipitating within the storage granules. Thus, zinc and the kynurenine pathway­well-known modulators of immunity, blood pressure, aging, and neurodegeneration­are physiologically connected.


Subject(s)
Drosophila melanogaster , Kynurenine , Tryptophan , Zinc , Animals , Drosophila melanogaster/metabolism , Fat Body/metabolism , Kynurenine/metabolism , Malpighian Tubules/metabolism , Tryptophan/metabolism , Zinc/metabolism
4.
BMC Genomics ; 25(1): 626, 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38902625

ABSTRACT

BACKGROUND: Wheat grain endosperm is mainly composed of proteins and starch. The contents and the overall composition of seed storage proteins (SSP) markedly affect the processing quality of wheat flour. Polyploidization results in duplicated chromosomes, and the genomes are often unstable and may result in a large number of gene losses and gene rearrangements. However, the instability of the genome itself, as well as the large number of duplicated genes generated during polyploidy, is an important driving force for genetic innovation. In this study, we compared the differences in starch and SSP, and analyzed the transcriptome and metabolome among Aegilops sharonensis (R7), durum wheat (Z636) and amphidiploid (Z636×R7) to reveal the effects of polyploidization on the synthesis of seed reserve polymers. RESULTS: The total starch and amylose content of Z636×R7 was significantly higher than R7 and lower than Z636. The gliadin and glutenin contents of Z636×R7 were higher than those in Z636 and R7. Through transcriptome analysis, there were 21,037, 2197, 15,090 differentially expressed genes (DEGs) in the three comparison groups of R7 vs Z636, Z636 vs Z636×R7, and Z636×R7 vs R7, respectively, which were mainly enriched in carbon metabolism and amino acid biosynthesis pathways. Transcriptome data and qRT-PCR were combined to analyze the expression levels of genes related to storage polymers. It was found that the expression levels of some starch synthase genes, namely AGP-L, AGP-S and GBSSI in Z636×R7 were higher than in R7 and among the 17 DEGs related to storage proteins, the expression levels of 14 genes in R7 were lower than those in Z636 and Z636×R7. According to the classification analysis of all differential metabolites, most belonged to carboxylic acids and derivatives, and fatty acyls were enriched in the biosynthesis of unsaturated fatty acids, niacin and nicotinamide metabolism, one-carbon pool by folate, etc. CONCLUSION: After allopolyploidization, the expression of genes related to starch synthesis was down-regulated in Z636×R7, and the process of starch synthesis was inhibited, resulting in delayed starch accumulation and prolongation of the seed development process. Therefore, at the same development time point, the starch accumulation of Z636×R7 lagged behind that of Z636. In this study, the expression of the GSe2 gene in Z636×R7 was higher than that of the two parents, which was beneficial to protein synthesis, and increased the protein content. These results eventually led to changes in the synthesis of seed reserve polymers. The current study provided a basis for a greater in-depth understanding of the mechanism of wheat allopolyploid formation and its stable preservation, and also promoted the effective exploitation of high-value alleles.


Subject(s)
Aegilops , Seeds , Triticum , Triticum/genetics , Triticum/metabolism , Aegilops/genetics , Aegilops/metabolism , Seeds/genetics , Seeds/metabolism , Hybridization, Genetic , Polyploidy , Starch/biosynthesis , Starch/metabolism , Transcriptome , Gene Expression Profiling , Gene Expression Regulation, Plant , Proteomics/methods , Multiomics
5.
PLoS Pathog ; 18(1): e1010219, 2022 01.
Article in English | MEDLINE | ID: mdl-35025971

ABSTRACT

Excessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously. We evaluated effects of endogenous itaconate and exogenous application of itaconate and its variants dimethyl- and 4-octyl-itaconate (DI, 4OI) on host responses to influenza A virus (IAV). Infection induced expression of ACOD1, the enzyme catalyzing itaconate synthesis, in monocytes and macrophages, which correlated with viral replication and was abrogated by DI and 4OI treatment. In IAV-infected mice, pulmonary inflammation and weight loss were greater in Acod1-/- than in wild-type mice, and DI treatment reduced pulmonary inflammation and mortality. The compounds reversed infection-triggered interferon responses and modulated inflammation in human cells supporting non-productive and productive infection, in peripheral blood mononuclear cells, and in human lung tissue. All three itaconates reduced ROS levels and STAT1 phosphorylation, whereas AKT phosphorylation was reduced by 4OI and DI but increased by itaconate. Single-cell RNA sequencing identified monocytes as the main target of infection and the exclusive source of ACOD1 mRNA in peripheral blood. DI treatment silenced IFN-responses predominantly in monocytes, but also in lymphocytes and natural killer cells. Ectopic synthesis of itaconate in A549 cells, which do not physiologically express ACOD1, reduced infection-driven inflammation, and DI reduced IAV- and IFNγ-induced CXCL10 expression in murine macrophages independent of the presence of endogenous ACOD1. The compounds differed greatly in their effects on cellular gene homeostasis and released cytokines/chemokines, but all three markedly reduced release of the pro-inflammatory chemokines CXCL10 (IP-10) and CCL2 (MCP-1). Viral replication did not increase under treatment despite the dramatically repressed IFN responses. In fact, 4OI strongly inhibited viral transcription in peripheral blood mononuclear cells, and the compounds reduced viral titers (4OI>Ita>DI) in A549 cells whereas viral transcription was unaffected. Taken together, these results reveal itaconates as immunomodulatory and antiviral interventions for influenza virus infection.


Subject(s)
Influenza A virus/immunology , Macrophages/immunology , Orthomyxoviridae Infections/drug therapy , Succinates/pharmacology , A549 Cells , Animals , Carboxy-Lyases/deficiency , Carboxy-Lyases/immunology , Cytokines/genetics , Cytokines/immunology , Humans , Macrophages/virology , Mice , Mice, Knockout , Orthomyxoviridae Infections/genetics , Orthomyxoviridae Infections/immunology , THP-1 Cells
7.
Int J Environ Health Res ; : 1-10, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351519

ABSTRACT

Global environmental crises demand scaled-up investment in education about planetary health. We identified college and university programs in the United States that focus on the human-animal-ecosystem nexus by systematically searching the 2023-2024 catalogs of more than 1000 schools. We identified four frequently-used curricular models: (1) One Health programs offered by universities with veterinary and agriculture schools that emphasize zoonotic diseases, antimicrobial resistance, food safety, and wildlife conservation; (2) climate change and health (climate medicine) programs for graduate and professional students at large universities with medical and public health schools; (3) global environmental public health programs focused on pollution and other exposures; and (4) sustainability and health programs emphasizing food security, environmental justice, and other health issues that can be improved with ethical design and engineering. Highlighting the shared goals of these distinct academic models may help make planetary health a more visible area of teaching, research, and practice.

8.
Angew Chem Int Ed Engl ; 63(1): e202310983, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37857582

ABSTRACT

The development of potent adjuvants is an important step for improving the performance of subunit vaccines. CD1d agonists, such as the prototypical α-galactosyl ceramide (α-GalCer), are of special interest due to their ability to activate iNKT cells and trigger rapid dendritic cell maturation and B-cell activation. Herein, we introduce a novel derivatization hotspot at the α-GalCer skeleton, namely the N-substituent at the amide bond. The multicomponent diversification of this previously unexplored glycolipid chemotype space permitted the introduction of a variety of extra functionalities that can either potentiate the adjuvant properties or serve as handles for further conjugation to antigens toward the development of self-adjuvanting vaccines. This strategy led to the discovery of compounds eliciting enhanced antigen-specific T cell stimulation and a higher antibody response when delivered by either the parenteral or the mucosal route, as compared to a known potent CD1d agonist. Notably, various functionalized α-GalCer analogues showed a more potent adjuvant effect after intranasal immunization than a PEGylated α-GalCer analogue previously optimized for this purpose. Ultimately, this work could open multiple avenues of opportunity for the use of mucosal vaccines against microbial infections.


Subject(s)
Natural Killer T-Cells , Vaccines , Adjuvants, Immunologic/pharmacology , Galactosylceramides/pharmacology , Galactosylceramides/chemistry
9.
Angew Chem Int Ed Engl ; : e202409527, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959351

ABSTRACT

We investigate the inhibition mechanism between pomotrelvir and the SARS-CoV-2 main protease using molecular mechanics and quantum mechanics / molecular mechanics simulations. Alchemical transformations where each Pi group of pomotrelvir was transformed into its counterpart in nirmatrelvir were performed to unravel the individual contribution of each group to the binding and reaction processes. We have shown that while a γ-lactam ring is preferred at position P1, a δ-lactam ring is a reasonable alternative. For the P2 position, tertiary amines are preferred with respect to secondary amines. Flexible side chains at P2 position can disrupt the preorganization of the active site, favouring the exploration of non-reactive conformations. The substitution of the P2 group of pomotrelvir by that of nirmatrelvir resulted in a compound, named as C2, that presents better binding free energy and a higher population of reactive conformations in the Michaelis complex. Analysis of the chemical reaction to form the covalent complex has shown a similar reaction mechanism and activation free energies for pomotrelvir, nirmatrelvir and C2. We hope that these findings could be useful to design better inhibitors to fight present and future variants of SARS-CoV-2 virus.

10.
J Chem Inf Model ; 63(17): 5676-5688, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37635309

ABSTRACT

l-asparaginases catalyze the asparagine hydrolysis to aspartate. These enzymes play an important role in the treatment of acute lymphoblastic leukemia because these cells are unable to produce their own asparagine. Due to the immunogenic response and various side effects of enzymes of bacterial origin, many attempts have been made to replace these enzymes with mammalian enzymes such as human asparaginase type III (hASNaseIII). This study investigates the reaction mechanism of hASNaseIII through molecular dynamics simulations, quantum mechanics/molecular mechanics methods, and free energy calculations. Our simulations reveal that the dimeric form of the enzyme plays a vital role in stabilizing the substrate in the active site, despite the active site residues coming from a single protomer. Protomer-protomer interactions are essential to keep the enzyme in an active conformation. Our study of the reaction mechanism indicates that the self-cleavage process that generates an N-terminal residue (Thr168) is required to activate the enzyme. This residue acts as the nucleophile, attacking the electrophilic carbon of the substrate after a proton transfer from its hydroxyl group to the N-terminal amino group. The reaction mechanism proceeds with the formation of an acyl-enzyme complex and its hydrolysis, which turns out to be the rate-determining step. Our proposal of the enzymatic mechanism sheds light on the role of different active site residues and rationalizes the studies on mutations. The insights provided here about hASNaseIII activity could contribute to the comprehension of the disparities among different ASNases and might even guide the design of new variants with improved properties for acute lymphoblastic leukemia treatment.


Subject(s)
Asparaginase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Animals , Humans , Asparagine , Protein Subunits , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Multienzyme Complexes , Mammals
11.
Nanomedicine ; 49: 102655, 2023 04.
Article in English | MEDLINE | ID: mdl-36681171

ABSTRACT

Herein, we provide the first description of a synthetic delivery method for self-replicating replicon RNAs (RepRNA) derived from classical swine fever virus (CSFV) using a Coatsome-replicon vehicle based on Coatsome® SS technologies. This results in an unprecedented efficacy when compared to well-established polyplexes, with up to ∼65 fold-increase of the synthesis of RepRNA-encoded gene of interest (GOI). We demonstrated the efficacy of such Coatsome-replicon vehicles for RepRNA-mediated induction of CD8 T-cell responses in mice. Moreover, we provide new insights on physical properties of the RepRNA, showing that the removal of all CSFV structural protein genes has a positive effect on the translation of the GOI. Finally, we successfully engineered RepRNA constructs encoding a porcine reproductive and respiratory syndrome virus (PRRSV) antigen, providing an example of antigen expression with potential application to combat viral diseases. The versatility and simplicity of modifying and manufacturing these Coatsome-replicon vehicle formulations represents a major asset to tackle foreseeable emerging pandemics.


Subject(s)
Communicable Diseases , RNA , Swine , Mice , Animals , RNA/genetics , Antigens , Communicable Diseases/genetics , Replicon/genetics
12.
Int J Mol Sci ; 25(1)2023 Dec 23.
Article in English | MEDLINE | ID: mdl-38203417

ABSTRACT

Malpighian tubules (MTs) are arthropod excretory organs crucial for the osmoregulation, detoxification and excretion of xenobiotics and metabolic wastes, which include tryptophan degradation products along the kynurenine (KYN) pathway. Specifically, the toxic intermediate 3-hydroxy kynurenine (3-HK) is metabolized through transamination to xanthurenic acid or in the synthesis of ommochrome pigments. Early investigations in Drosophila larval fat bodies revealed an intracellular autofluorescence (AF) that depended on tryptophan administration. Subsequent observations documented AF changes in the MTs of Drosophila eye-color mutants genetically affecting the conversion of tryptophan to KYN or 3-HK and the intracellular availability of zinc ions. In the present study, the AF properties of the MTs in the Asian tiger mosquito, Aedes albopictus, were characterized in different stages of the insect's life cycle, tryptophan-administered larvae and blood-fed adult females. Confocal imaging and microspectroscopy showed AF changes in the distribution of intracellular, brilliant granules and in the emission spectral shape and amplitude between the proximal and distal segments of MTs across the different samples. The findings suggest AF can serve as a promising marker for investigating the functional status of MTs in response to metabolic alterations, contributing to the use of MTs as a potential research model in biomedicine.


Subject(s)
Aedes , Kynurenine , Tryptophan , Female , Animals , Malpighian Tubules , Drosophila , Larva
13.
J Sci Food Agric ; 103(10): 4975-4982, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36960792

ABSTRACT

BACKGROUND: Continuous development of new wheat varieties is necessary to satisfy the demands of farmers, industry, and consumers. The evaluation of candidate genotypes for commercial release under different on-farm conditions is a strategy that has been strongly recommended to assess the performance and stability of new cultivars in heterogeneous environments and under different farming systems. The main objectives of this study were to evaluate the grain yield and quality performance of ten different genotypes across six contrasting farmers' field conditions with different irrigation and nitrogen fertilization levels, and to develop suggestions to aid breeding programs and farmers to use resources more efficiently. Genotype and genotype by environment (GGE) interaction biplot analyses were used to identify the genotypes with the strongest performance and greatest stability in the Yaqui Valley. RESULTS: Analyses showed that some traits were mainly explained by the genotype effect, others by the field management conditions, and the rest by combined effects. The most representative and diverse field conditions in the Yaqui Valley were also identified, a useful strategy when breeders have limited resources. The independent effects of irrigation and nitrogen levels and their interaction were analyzed for each trait. The results showed that full irrigation was not always necessary to maximize grain yield in the Yaqui Valley. Other suggestions for more efficient use of resources are proposed. CONCLUSIONS: The combination of on-farm trials with GGE interaction analyses is an effective strategy to include in breeding programs to improve processes and resources. Identifying the most outstanding and stable genotypes under real on-farm systems is key to the development of novel cultivars adapted to different management and environmental conditions. © 2023 Society of Chemical Industry.


Subject(s)
Bread , Triticum , Triticum/genetics , Farms , Bread/analysis , Plant Breeding , Genotype , Edible Grain , Nitrogen
14.
J Sci Food Agric ; 103(10): 5108-5115, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-36974631

ABSTRACT

BACKGROUND: Durum wheat is key source of calories and nutrients for many regions of the world. Demand for it is predicted to increase. Further efforts are therefore needed to develop new cultivars adapted to different future scenarios. Developing a novel cultivar takes, on average, 10 years and advanced lines are tested during the process, in general, under standardized conditions. Although evaluating candidate genotypes for commercial release under different on-farm conditions is a strategy that is strongly recommended, its application for durum wheat and particularly for quality traits has been limited. This study evaluated the grain yield and quality performance of eight different genotypes across five contrasting farmers' fields over two seasons. Combining different analysis strategies, the most outstanding and stable genotypes were identified. RESULTS: The analyses revealed that some traits were mainly explained by the genotype effect (thousand kernel weight, flour sodium dodecyl sulfate sedimentation volume, and flour yellowness), others by the management practices (yield and grain protein content), and others (test weight) by the year effect. In general, yield showed the highest range of variation across genotypes, management practices, and years and test weight the narrowest range. Flour yellowness was the most stable trait across management conditions, while yield-related traits were the most unstable. We also determined the most representative and discriminative field conditions, which is a beneficial strategy when breeders are constrained in their ability to develop multi-environment experiments. CONCLUSIONS: We concluded that assessing genotypes in different farming systems is a valid and complementary strategy for on-station trials for determining the performance of future commercial cultivars in heterogeneous environments to improve the breeding process and resources. © 2023 Society of Chemical Industry.


Subject(s)
Plant Breeding , Triticum , Triticum/genetics , Triticum/chemistry , Farms , Phenotype , Genotype
15.
J Sci Food Agric ; 103(4): 1668-1675, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36541584

ABSTRACT

BACKGROUND: Eighteen wheat (Triticum aestivum-Aegilops sharonensis) introgression lines were generated in the previous study. These lines possessed four types of high molecular weight glutenin subunit (HMW-GS) combinations consisting of one glutenin from Ae. sharonensis (Glu-1Ssh ) plus one or more HMW-GSs from common wheat (Glu-A1, Glu-B1, or Glu-D1). RESULTS: In this study, we conducted quality tests to explore the effects of 1Ssh x2.3 and 1Ssh y2.9 on the processing quality of 18 wheat-Aegilops sharonensis introgression lines. Our data showed that the 1Ssh x2.3 and 1Ssh y2.9 subunits had a positive effect on gluten and baking quality. The bread volume of all these lines was higher than that of the parental wheat line LM3. In these lines, the HMW-GS content and the HMW/LMW ratio of 66-36-11 were higher than those of LM3, and the 66-36-11 line exhibited greatly improved quality parameters in comparison with the parent LM3. CONCLUSION: These results demonstrated that the 1Ssh x2.3 and 1Ssh y2.9 subunits from Ae. sharonensis contributed immensely to gluten strength and bread-baking quality, and proved a positive relationship between the HMW-GS sizes and their effects on dough strength in vivo. The materials developed could be used by breeding programs aiming to increase bread-making quality. © 2022 Society of Chemical Industry.


Subject(s)
Aegilops , Triticum , Triticum/genetics , Triticum/chemistry , Bread , Molecular Weight , Plant Breeding , Glutens/chemistry
16.
Int Ophthalmol ; 43(2): 677-695, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35962295

ABSTRACT

PURPOSE: Prostaglandin analogs (PGAs) are first-line treatments for ocular hypertension (OHT) and open-angle glaucoma (OAG). However, frequent side effects and high costs hinder patient's compliance resulting in disease progression. Evidence suggests selective laser trabeculoplasty (SLT) may be considered a first-line treatment for OHT and OAG due to its safety profile, minor side effects, and reduced costs. Considering that PGAs and SLT share action mechanisms, it is hypothesized that previous PGA therapy may affect subsequent SLT efficacy. Therefore, we analyzed if PGAs reduce SLT efficacy. METHODS: An evidence-based review was performed to assess the safety and efficacy of SLT in patients previously treated with PGAs. For this purpose, we performed an extensive literature search using the National Library of Medicine's PubMed and Google Scholar database for all English language articles published until May 2021. RESULTS: There is evidence of non-superiority of PGAs therapy versus SLT for OHT and OAG. A multicenter, randomized, observer-masked clinical trial (RCT) of untreated OHT and OAG patients concluded that SLT should be offered as the first-line treatment for these patients. This study was supported by a meta-analysis of RCTs, comparing SLT efficacy versus antiglaucoma drugs only, with the advantage of an SLT lower rate of adverse effects. CONCLUSIONS: Cost-effectiveness, patient compliance, and antiglaucoma drugs' side effects, including higher surgical failure, favor consideration of SLT as first-line therapy for OAG and OHT. Furthermore, SLT efficacy does not seem to be affected by prior PGA administration; however, larger cohort, comparative, multicenter RCTs are necessary to answer this question.


Subject(s)
Glaucoma, Open-Angle , Glaucoma , Laser Therapy , Ocular Hypertension , Trabeculectomy , Humans , Trabeculectomy/methods , Intraocular Pressure , Antiglaucoma Agents , Antihypertensive Agents/therapeutic use , Glaucoma/surgery , Ocular Hypertension/drug therapy , Ocular Hypertension/surgery , Prostaglandins, Synthetic/therapeutic use , Laser Therapy/methods , Lasers , Treatment Outcome , Randomized Controlled Trials as Topic , Multicenter Studies as Topic
17.
Clin Immunol ; 238: 108990, 2022 05.
Article in English | MEDLINE | ID: mdl-35395388

ABSTRACT

HLA is a polymorphic antigen presenter which has provided valuable information on the susceptibility of populations to viruses. Therefore, the study of HLA can reveal specific susceptibility or resistance alleles to severe COVID-19 in an ethnically dependent manner. This pilot study investigated HLA alleles associated with COVID-19 severity in Tapachula, Chiapas, Mexico. A total of 146 Mexican Mestizos were typed for HLA class I and II using PCR-SSP. The patients were classified according to the outcome (death or improvement) and the infection's severity (mild or severe). In addition, a group of exposed uninfected individuals was included. HLA-A*68 was found to be a protective allele against the severe infection and fatal outcome; pC = 0.03, OR = 0.4, 95% CI =0.20-0.86, and pC =0.009, OR = 0.3, 95% CI =0.13-0.71 respectively. HLA-DRB1*03 also appears to be a protective factor against fatal outcome pC = 0.009, OR = 0.1, 95%IC = 0.01-0.66; however, the low frequency of this allele in the studied population limits the statistical power. The severity and fatal outcome of COVID-19 patients in Tapachula, Chiapas depend more on the lack of resistance than susceptibility HLA alleles.


Subject(s)
COVID-19 , HLA-A Antigens , Alleles , COVID-19/genetics , Gene Frequency , Genetic Predisposition to Disease , HLA-A Antigens/genetics , HLA-DRB1 Chains/genetics , Humans , Mexico/epidemiology , Pilot Projects
18.
World J Urol ; 40(3): 727-738, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34741631

ABSTRACT

PURPOSE: White light (WL) is the traditional imaging modality for transurethral resection of bladder tumour (TURBT). IMAGE1S is a likely addition. We compare 18-mo recurrence rates following TURBT using IMAGE1S versus WL guidance. METHODS: Twelve international centers conducted a single-blinded randomized controlled trial. Patients with primary and recurrent non-muscle-invasive bladder cancer (NMIBC) were randomly assigned 1:1 to TURBT guided by IMAGE1S or WL. Eighteen-month recurrence rates and subanalysis for primary/recurrent and risk groups were planned and compared by chi-square tests and survival analyses. RESULTS: 689 patients were randomized for WL-assisted (n = 354) or IMAGE1S-assisted (n = 335) TURBT. Of these, 64.7% had a primary tumor, 35.3% a recurrent tumor, and 4.8%, 69.2% and 26.0% a low-, intermediate-, and high-risk tumor, respectively. Overall, 60 and 65 patients, respectively, completed 18-mo follow-up, with recurrence rates of 31.0% and 25.4%, respectively (p = 0.199). In patients with primary, low-/intermediate-risk tumors, recurrence rates at 18-mo were significantly higher in the WL group compared with the IMAGE1S group (31.9% and 22.3%, respectively: p 0.035). Frequency and severity of adverse events were comparable in both treatment groups. Immediate and adjuvant intravesical instillation therapy did not differ between the groups. Potential limitations included lack of uniformity of surgical resection, central pathology review, and missing data. CONCLUSION: There was not difference in the overall recurrence rates between IMAGE1S and WL assistance 18-mo after TURBT in patients with NMIBC. However, IMAGE1S-assisted TURBT considerably reduced the likelihood of disease recurrence in primary, low/intermediate risk patients. REGISTRATION: ClinicalTrials.gov Identifier NCT02252549 (30-09-2014).


Subject(s)
Urinary Bladder Neoplasms , Cystectomy/methods , Humans , Neoplasm Invasiveness , Neoplasm Recurrence, Local/pathology , Prospective Studies , Randomized Controlled Trials as Topic , Urinary Bladder Neoplasms/pathology
19.
Int J Mol Sci ; 23(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955567

ABSTRACT

The granule-bound starch synthase I (GBSSI) encoded by the waxy gene is responsible for amylose synthesis in the endosperm of wheat grains. In the present study, a novel Wx-B1 null mutant line, M3-415, was identified from an ethyl methanesulfonate-mutagenized population of Chinese tetraploid wheat landrace Jianyangailanmai (LM47). The gene sequence indicated that the mutated Wx-B1 encoded a complete protein; this protein was incompatible with the protein profile obtained using sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which showed the lack of Wx-B1 protein in the mutant line. The prediction of the protein structure showed an amino acid substitution (G470D) at the edge of the ADPG binding pocket, which might affect the binding of Wx-B1 to starch granules. Site-directed mutagenesis was further performed to artificially change the amino acid at the sequence position 469 from alanine (A) to threonine (T) (A469T) downstream of the mutated site in M3-415. Our results indicated that a single amino acid mutation in Wx-B1 reduces its activity by impairing its starch-binding capacity. The present study is the first to report the novel mechanism underlying Wx-1 deletion in wheat; moreover, it provided new insights into the inactivation of the waxy gene and revealed that fine regulation of wheat amylose content is possible by modifying the GBSSI activity.


Subject(s)
Amylose , Triticum , Amino Acids/metabolism , Amylose/analysis , Catalytic Domain , Mutation , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/metabolism , Tetraploidy , Triticum/metabolism
20.
J Sci Food Agric ; 102(13): 5974-5983, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35445411

ABSTRACT

BACKGROUND: An increased demand for food has mirrored the increasing global population. Obesity and diabetes are two disorders induced by poor eating choices. Consequently, there is an urgent need to develop modified foods that can ameliorate such illnesses. The objective of this study was to explore the effect of Waxy genes on the structural and functional properties of starch, with the aim of improving food quality. Wild-type tetraploid wheat was compared with three mutants with different Waxy gene combinations. RESULTS: The proportion of B-type granules was higher in the mutants than in the wild-type (Wx-AB), and there were significant changes in the starch granule size, number, and phenotype in the Wx free mutant (Wx-ab). The lowest branch chain length was observed in Wx-ab, whereas Wx-AB had the highest branch chain length of DP ≥ 37. Wx-ab had the highest degree of crystallinity. The crystallinity trend followed the order Wx-ab>Wx-Ab>Wx-aB>Wx-AB. The amount of slowly digestible starch (SDS) was higher in native, gelatinized, and retrograded starch in the mutant. The amount of retrograded starch was closer to gelatinized starch than to native starch. CONCLUSION: Waxy proteins make a substantial contribution to starch structure. A lack of waxy proteins reduced the unit chains markedly compared with the control. Waxy proteins significantly affected the smaller and longer chains of starch. The lines with differing waxy composition had different effects on food digestion. The Wx-AB in native starch and Wx-Ab in gelatinized starch can control obesity and diabetes by slow-digesting carbohydrates and high resistance to digestion. © 2022 Society of Chemical Industry.


Subject(s)
Starch Synthase , Triticum , Obesity , Plant Proteins/genetics , Plant Proteins/metabolism , Starch/chemistry , Starch Synthase/genetics , Starch Synthase/metabolism , Tetraploidy , Triticum/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL