Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Nat Immunol ; 18(9): 1016-1024, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28692065

ABSTRACT

Aberrant population expansion of follicular helper T cells (TFH cells) occurs in patients with lupus. An unanswered question is whether an altered repertoire of T cell antigen receptors (TCRs) is associated with such expansion. Here we found that the transcription factor Blimp-1 (encoded by Prdm1) repressed expression of the gene encoding cathepsin S (Ctss), a cysteine protease that cleaves invariant chains and produces antigenic peptides for loading onto major histocompatibility complex (MHC) class II molecules. The increased CTSS expression in dendritic cells (DCs) from female mice with dendritic cell-specific conditional knockout of Prdm1 (CKO mice) altered the presentation of antigen to CD4+ T cells. Analysis of complementarity-determining region 3 (CDR3) regions containing the ß-chain variable region (Vß) demonstrated a more diverse repertoire of TFH cells from female CKO mice than of those from wild-type mice. In vivo treatment of CKO mice with a CTSS inhibitor abolished the lupus-related phenotype and reduced the diversity of the TFH cell TCR repertoire. Thus, Blimp-1 deficiency in DCs led to loss of appropriate regulation of Ctss expression in female mice and thereby modulated antigen presentation and the TFH cell repertoire to contribute to autoimmunity.


Subject(s)
Cathepsins/metabolism , Dendritic Cells/metabolism , Lupus Erythematosus, Systemic/immunology , T-Lymphocytes, Helper-Inducer/immunology , Transcription Factors/genetics , Animals , Antibodies, Antinuclear/immunology , Antigen Presentation/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , DNA/immunology , Dendritic Cells/immunology , Enzyme-Linked Immunosorbent Assay , Female , Kidney/pathology , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation , Mice , Mice, Knockout , Positive Regulatory Domain I-Binding Factor 1 , Receptors, Antigen, T-Cell, alpha-beta/genetics
2.
Bioconjug Chem ; 32(4): 702-712, 2021 04 21.
Article in English | MEDLINE | ID: mdl-33691062

ABSTRACT

The utilization of an activatable, substrate-based probe design in combination with a cellular targeting approach has been rarely explored for cancer imaging on a small-molecule basis, although such probes could benefit from advantages of both concepts. Cysteine proteases like cathepsin S are known to be involved in fundamental processes associated with tumor development and progression and thus are valuable cancer markers. We report the development of a combined dual functional DOTAM-based, RGD-targeted internally quenched fluorescent probe that is activated by cathepsin S. The probe exhibits excellent in vitro activation kinetics which can be fully translated to human cancer cell lines. We demonstrate that the targeted, activatable probe is superior to its nontargeted analog, exhibiting improved uptake into ανß3-integrin expressing human sarcoma cells (HT1080) and significantly higher resultant fluorescence staining. However, profound activation was also found in cancer cells with a lower integrin expression level, whereas in healthy cells almost no probe activation could be observed, highlighting the high selectivity of our probe toward cancer cells. These auspicious results show the outstanding potential of the dual functionality concept combining a substrate-based probe design with a targeting approach, which could form the basis for highly sensitive and selective in vivo imaging probes.


Subject(s)
Fluorescent Dyes/chemistry , Neoplasms/diagnosis , Cell Line, Tumor , Humans , Neoplasms/pathology , Optical Imaging/methods , Sensitivity and Specificity
3.
J Am Soc Nephrol ; 27(6): 1635-49, 2016 06.
Article in English | MEDLINE | ID: mdl-26567242

ABSTRACT

Endothelial dysfunction is a central pathomechanism in diabetes-associated complications. We hypothesized a pathogenic role in this dysfunction of cathepsin S (Cat-S), a cysteine protease that degrades elastic fibers and activates the protease-activated receptor-2 (PAR2) on endothelial cells. We found that injection of mice with recombinant Cat-S induced albuminuria and glomerular endothelial cell injury in a PAR2-dependent manner. In vivo microscopy confirmed a role for intrinsic Cat-S/PAR2 in ischemia-induced microvascular permeability. In vitro transcriptome analysis and experiments using siRNA or specific Cat-S and PAR2 antagonists revealed that Cat-S specifically impaired the integrity and barrier function of glomerular endothelial cells selectively through PAR2. In human and mouse type 2 diabetic nephropathy, only CD68(+) intrarenal monocytes expressed Cat-S mRNA, whereas Cat-S protein was present along endothelial cells and inside proximal tubular epithelial cells also. In contrast, the cysteine protease inhibitor cystatin C was expressed only in tubules. Delayed treatment of type 2 diabetic db/db mice with Cat-S or PAR2 inhibitors attenuated albuminuria and glomerulosclerosis (indicators of diabetic nephropathy) and attenuated albumin leakage into the retina and other structural markers of diabetic retinopathy. These data identify Cat-S as a monocyte/macrophage-derived circulating PAR2 agonist and mediator of endothelial dysfunction-related microvascular diabetes complications. Thus, Cat-S or PAR2 inhibition might be a novel strategy to prevent microvascular disease in diabetes and other diseases.


Subject(s)
Cathepsins/physiology , Diabetic Angiopathies/etiology , Endothelial Cells/enzymology , Receptor, PAR-2/metabolism , Animals , Cathepsins/antagonists & inhibitors , Cells, Cultured , Kidney Glomerulus/cytology , Male , Mice , Microvessels , Proline/analogs & derivatives , Proline/pharmacology , Urothelium/cytology
4.
Am J Pathol ; 185(4): 1156-66, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25680278

ABSTRACT

Chronic renal disease (CRD) accelerates the development of atherosclerosis. The potent protease cathepsin S cleaves elastin and generates bioactive elastin peptides, thus promoting vascular inflammation and calcification. We hypothesized that selective cathepsin S inhibition attenuates atherogenesis in hypercholesterolemic mice with CRD. CRD was induced by 5/6 nephrectomy in high-fat high-cholesterol fed apolipoprotein E-deficient mice. CRD mice received a diet admixed with 6.6 or 60 mg/kg of the potent and selective cathepsin S inhibitor RO5444101 or a control diet. CRD mice had significantly higher plasma levels of osteopontin, osteocalcin, and osteoprotegerin (204%, 148%, and 55%, respectively; P < 0.05), which were inhibited by RO5444101 (60%, 40%, and 36%, respectively; P < 0.05). Near-infrared fluorescence molecular imaging revealed a significant reduction in cathepsin activity in treated mice. RO5444101 decreased osteogenic activity. Histologic assessment in atherosclerotic plaque demonstrated that RO5444101 reduced immunoreactive cathepsin S (P < 0.05), elastin degradation (P = 0.01), plaque size (P = 0.01), macrophage accumulation (P < 0.01), growth differentiation factor-15 (P = 0.0001), and calcification (alkaline phosphatase activity, P < 0.01; osteocalcin, P < 0.05). Furthermore, cathepsin S inhibitor or siRNA significantly decreased expression of growth differentiation factor-15 and monocyte chemotactic protein-1 in a murine macrophage cell line and human primary macrophages. Systemic inhibition of cathepsin S attenuates the progression of atherosclerotic lesions in 5/6 nephrectomized mice, serving as a potential treatment for atherosclerosis in patients with CRD.


Subject(s)
Apolipoproteins E/deficiency , Atherosclerosis/pathology , Cathepsins/antagonists & inhibitors , Kidney Failure, Chronic/enzymology , Kidney Failure, Chronic/pathology , Animals , Arteries/enzymology , Arteries/pathology , Atherosclerosis/complications , Biomarkers/blood , Cathepsins/metabolism , Chemokine CCL2/metabolism , Growth Differentiation Factor 15/metabolism , Humans , Interferon-gamma/pharmacology , Kidney Failure, Chronic/blood , Macrophages/drug effects , Macrophages/metabolism , Male , Mice , Osteogenesis/drug effects , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Vascular Calcification/complications , Vascular Calcification/pathology
5.
Ann Rheum Dis ; 74(2): 452-63, 2015 Feb.
Article in English | MEDLINE | ID: mdl-24300027

ABSTRACT

OBJECTIVES: Major histocompatibility complex (MHC) class II-mediated priming of T and B lymphocytes is a central element of autoimmunity in systemic lupus erythematosus (SLE) and lupus nephritis. The cysteine protease cathepsin S degrades the invariant peptide chain during MHC II assembly with antigenic peptide in antigen-presenting cells; therefore, we hypothesised that cathepsin S inhibition would be therapeutic in SLE. METHODS: We developed a highly specific small molecule, orally available, cathepsin S antagonist, RO5461111, with suitable pharmacodynamic and pharmacokinetic properties that efficiently suppressed antigen-specific T cell and B cell priming in vitro and in vivo. RESULTS: When given to MRL-Fas(lpr) mice with SLE and lupus nephritis, RO5461111 significantly reduced the activation of spleen dendritic cells and the subsequent expansion and activation of CD4 T cells and CD4/CD8 double-negative T cells. Cathepsin S inhibition impaired the spatial organisation of germinal centres, suppressed follicular B cell maturation to plasma cells and Ig class switch. This reversed hypergammaglobulinemia and significantly suppressed the plasma levels of numerous IgG (but not IgM) autoantibodies below baseline, including anti-dsDNA. This effect was associated with less glomerular IgG deposits, which protected kidneys from lupus nephritis. CONCLUSIONS: Together, cathepsin S promotes SLE by driving MHC class II-mediated T and B cell priming, germinal centre formation and B cell maturation towards plasma cells. These afferent immune pathways can be specifically reversed with the cathepsin S antagonist RO5461111, which prevents lupus nephritis progression even when given after disease onset. This novel therapeutic strategy could correct a common pathomechanism of SLE and other immune complex-related autoimmune diseases.


Subject(s)
Cathepsins/antagonists & inhibitors , Immunosuppressive Agents/pharmacology , Lupus Erythematosus, Systemic/immunology , Lupus Nephritis/immunology , Lymphocyte Activation/drug effects , Proline/analogs & derivatives , Animals , B-Lymphocytes/immunology , Blotting, Western , CD4-Positive T-Lymphocytes/immunology , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Histocompatibility Antigens Class I/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred MRL lpr , Proline/pharmacology , Real-Time Polymerase Chain Reaction
6.
Invest Ophthalmol Vis Sci ; 65(8): 26, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39017634

ABSTRACT

Purpose: CD25KO mice are a model of Sjögren disease (SjD) driven by autoreactive T cells. Cathepsin S (CTSS) is a protease crucial for major histocompatibility complex class II presentation that primes T cells. We investigated if a diet containing CTSS inhibitor would improve autoimmune signs in CD25KO mice. Methods: Four-week female CD25KO mice were randomly chosen to receive chow containing a CTSS inhibitor (R05461111, 262.5 mg/kg chow) or standard chow for 4 weeks. Cornea sensitivity was measured. Inflammatory score was assessed in lacrimal gland (LG) histologic sections. Flow cytometry of LG and ocular draining lymph nodes (dLNs) investigated expression of Th1 and Th17 cells. Expression of inflammatory, T- and B-cell, and apoptotic markers in the LG were assessed with quantitative PCR. The life span of mice receiving CTSS inhibitor or standard chow was compared. CD4+ T cells from both groups were isolated from spleens and adoptively transferred into RAG1KO female recipients. Results: Mice receiving CTSS inhibitor had better cornea sensitivity and improved LG inflammatory scores. There was a significant decrease in the frequency of CD4+ immune cells and a significant increase in the frequency of CD8+ immune cells in the dLNs of CTSS inhibitor mice. There was a significant decrease in Th1 and Th17 cells in CTSS inhibitor mice in both LGs and dLNs. Ifng, Ciita, and Casp8 mRNA in CTSS inhibitor mice decreased. Mice that received the CTSS inhibitor lived 30% longer. Adoptive transfer recipients with CTSS inhibitor-treated CD4+ T cells had improved cornea sensitivity and lower inflammation scores. Conclusions: Inhibiting CTSS could be a potential venue for the treatment of SjD in the eye and LG.


Subject(s)
Cathepsins , Disease Models, Animal , Flow Cytometry , Lacrimal Apparatus , Mice, Knockout , Sjogren's Syndrome , Animals , Mice , Sjogren's Syndrome/immunology , Sjogren's Syndrome/drug therapy , Female , Cathepsins/antagonists & inhibitors , Cathepsins/metabolism , Cathepsins/genetics , Lacrimal Apparatus/pathology , Lacrimal Apparatus/metabolism , Mice, Inbred C57BL , Adoptive Transfer , Th17 Cells/immunology , Real-Time Polymerase Chain Reaction , Th1 Cells/immunology , Interleukin-2 Receptor alpha Subunit
7.
Science ; 379(6635): 883, 2023 03 03.
Article in English | MEDLINE | ID: mdl-36862768

ABSTRACT

Small-molecule libraries encoded by peptide tags may accelerate the search for therapeutics.


Subject(s)
Drug Discovery , Peptides , Small Molecule Libraries , Peptides/chemical synthesis , Peptides/chemistry , Peptides/therapeutic use , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
8.
Curr Med Chem ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37916489

ABSTRACT

BACKGROUND: Neglected tropical diseases are a severe burden for mankind, affecting an increasing number of people around the globe. Many of those diseases are caused by protozoan parasites in which cysteine proteases plays a key role in the parasite's pathogenesis. OBJECTIVE: In this review article, we summarize the drug discovery efforts of the research community from 2017 - 2022 with a special focus on activities such as the optimization of small molecule cysteine protease inhibitors in terms of selectivity profiles or drug-like properties as well as in vivo studies. The cysteine proteases evaluated by this methodology include Cathepsin B1 from Schistosoma mansoni, papain, cruzain, falcipain, and rhodesain. METHODS: Exhaustive literature searches were performed using the keywords "Cysteine Proteases" and "Neglected Tropical Diseases" including the years 2017 - 2022. Overall, approximately 3'000 scientific papers were retrieved, which were filtered using specific keywords enabling the focus on drug discovery efforts. CONCLUSION: Potent and selective cysteine protease inhibitors to treat neglected tropical diseases were identified, which progressed to pharmacokinetic and in vivo efficacy studies. As far as the authors are aware of, none of those inhibitors reached the stage of active clinical development. Either the inhibitor's potency or pharmacokinetic properties or safety profile or a combination thereof prevented further development of the compounds. More efforts with particular emphasis on optimizing pharmacokinetic and safety properties are needed, potentially by collaborations of academic and industrial research groups with complementary expertise. Furthermore, new warheads reacting with the catalytic cysteine should be exploited to advance the research field in order to make a meaningful impact on society.

9.
Invest Ophthalmol Vis Sci ; 64(11): 7, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37540176

ABSTRACT

Purpose: Aged C57BL/6J (B6) mice have increased levels of cathepsin S, and aged cathepsin S (Ctss-/-) knockout mice are resistant to age-related dry eye. This study investigated the effects of cathepsin S inhibition on age-related dry eye disease. Methods: Female B6 mice aged 15.5 to 17 months were randomized to receive a medicated diet formulated by mixing the RO5461111 cathepsin S inhibitor or a standard diet for at least 12 weeks. Cornea mechanosensitivity was measured with a Cochet-Bonnet esthesiometer. Ocular draining lymph nodes and lacrimal glands (LGs) were excised and prepared for histology or assayed by flow cytometry to quantify infiltrating immune cells. The inflammatory foci (>50 cells) were counted under a 10× microscope lens and quantified using the focus score. Goblet cell density was investigated in periodic acid-Schiff stained sections. Ctss-/- mice were compared to age-matched wild-type mice. Results: Aged mice subjected to cathepsin S inhibition or Ctss-/- mice showed improved conjunctival goblet cell density and cornea mechanosensitivity. There was no change in total LG focus score in the diet or Ctss-/- mice, but there was a lower frequency of CD4+IFN-γ+ cell infiltration in the LGs. Furthermore, aged Ctss-/- LGs had an increase in T central memory, higher numbers of CD19+B220-, and fewer CD19+B220+ cells than wild-type LGs. Conclusions: Our results indicate that therapies aimed at decreasing cathepsin S can ameliorate age-related dry eye disease with a highly beneficial impact on the ocular surface. Further studies are needed to investigate the role of cathepsin S during aging.


Subject(s)
Dry Eye Syndromes , Lacrimal Apparatus , Animals , Female , Mice , Disease Models, Animal , Dry Eye Syndromes/metabolism , Lacrimal Apparatus/metabolism , Mice, Inbred C57BL , Mice, Knockout , Phenotype , Tears/metabolism
10.
Chemistry ; 18(1): 213-22, 2012 Jan 02.
Article in English | MEDLINE | ID: mdl-22162109

ABSTRACT

Factor Xa, a serine protease from the blood coagulation cascade, is an ideal enzyme for molecular recognition studies, as its active site is highly shape-persistent and features distinct, concave sub-pockets. We developed a family of non-peptidic, small-molecule inhibitors with a central tricyclic core orienting a neutral heterocyclic substituent into the S1 pocket and a quaternary ammonium ion into the aromatic box in the S4 pocket. The substituents were systematically varied to investigate cation-π interactions in the S4 pocket, optimal heterocyclic stacking on the flat peptide walls lining the S1 pocket, and potential water replacements in both the S1 and the S4 pockets. Structure-activity relationships were established to reveal and quantify contributions to the binding free enthalpy, resulting from single-atom replacements or positional changes in the ligands. A series of high-affinity ligands with inhibitory constants down to K(i)=2 nM were obtained and their proposed binding geometries confirmed by X-ray co-crystal structures of protein-ligand complexes.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Factor Xa Inhibitors , Isoxazoles/chemical synthesis , Peptides/chemistry , Thiophenes/chemical synthesis , Water/chemistry , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Factor Xa/chemistry , Factor Xa/genetics , Humans , Isoxazoles/chemistry , Isoxazoles/pharmacology , Molecular Conformation , Serine Endopeptidases/metabolism , Stereoisomerism , Thermodynamics , Thiophenes/chemistry , Thiophenes/pharmacology , Tyrosine/genetics
11.
J Med Chem ; 65(4): 3606-3615, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35138850

ABSTRACT

The origin of small-molecule leads that were pursued across the independent research organizations Roche and Genentech from 2009 to 2020 is described. The identified chemical series are derived from a variety of lead-finding methods, which include public information, high-throughput screening (both full file and focused), fragment-based design, DNA-encoded library technology, use of legacy internal data, in-licensing, and de novo design (often structure-based). The translation of the lead series into in vivo tool compounds and development candidates is discussed as are the associated biological target classes and corresponding therapeutic areas. These analyses identify important trends regarding the various lead-finding approaches, which will likely impact their future application in the Roche and Genentech research groups. They also highlight commonalities and differences across the two independent research organizations. Several caveats associated with the employed data collection and analysis methodologies are included to enhance the interpretation of the presented information.


Subject(s)
Drug Discovery/trends , Drug Industry/trends , Pharmacology/trends , Small Molecule Libraries , DNA/chemistry , DNA/genetics , High-Throughput Screening Assays , Humans , Research Design
12.
Bioorg Med Chem Lett ; 21(11): 3237-42, 2011 Jun 01.
Article in English | MEDLINE | ID: mdl-21550236

ABSTRACT

A novel sulfonylureido pyridine series exemplified by compound 19 yielded potent inhibitors of FBPase showing significant glucose reduction and modest glycogen lowering in the acute db/db mouse model for Type-2 diabetes. Our inhibitors occupy the allosteric binding site and also extend into the dyad interface region of tetrameric FBPase.


Subject(s)
Aminopyridines/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Fructose-Bisphosphatase/antagonists & inhibitors , Administration, Oral , Allosteric Site , Aminopyridines/chemistry , Animals , Crystallography, X-Ray , Diabetes Mellitus, Type 2 , Disease Models, Animal , Enzyme Inhibitors/chemistry , Fructose-Bisphosphatase/chemistry , Fructose-Bisphosphatase/metabolism , Humans , Inhibitory Concentration 50 , Liver/enzymology , Mice , Molecular Structure
13.
ChemMedChem ; 16(18): 2760-2763, 2021 09 16.
Article in English | MEDLINE | ID: mdl-34374230

ABSTRACT

We retrace Prof. François Diederich's consultancy work for Roche and its impact over the years he worked with us. François Diederich uniquely shaped our approach to molecular design, and interactions with him and his research group at ETH Zurich have created deep insights into molecular recognition. Herein we share how his style and approach continue to inspire us.


Subject(s)
Cysteine Endopeptidases/chemical synthesis , Macrocyclic Compounds/chemical synthesis , Cysteine Endopeptidases/chemistry , Humans , Macrocyclic Compounds/chemistry , Molecular Structure
14.
Bioorg Med Chem Lett ; 20(17): 5313-9, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20650636

ABSTRACT

A series of (3R,4R)-pyrrolidine-3,4-dicarboxylic acid amides was investigated with respect to their factor Xa inhibitory activity, selectivity, pharmacokinetic properties, and ex vivo antithrombotic activity. The clinical candidate from this series, R1663, exhibits excellent selectivity against a panel of serine proteases and good pharmacokinetic properties in rats and monkeys. A Phase I clinical study with R1663 has been finalized.


Subject(s)
Factor Xa Inhibitors , Pyrrolidines/pharmacology , Pyrrolidines/chemistry
16.
J Med Chem ; 61(8): 3370-3388, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29590751

ABSTRACT

Macrocyclic inhibitors of rhodesain (RD), a parasitic cysteine protease and drug target for the treatment of human African trypanosomiasis, have shown low metabolic stability at the macrocyclic ether bridge. A series of acyclic dipeptidyl nitriles was developed using structure-based design (PDB ID: 6EX8 ). The selectivity against the closely related cysteine protease human cathepsin L (hCatL) was substantially improved, up to 507-fold. In the S2 pocket, 3,4-dichlorophenylalanine residues provided high trypanocidal activities. In the S3 pocket, aromatic residues provided enhanced selectivity against hCatL. RD inhibition ( Ki values) and in vitro cell-growth of Trypanosoma brucei rhodesiense (IC50 values) were measured in the nanomolar range. Triazole-based ligands, obtained by a safe, gram-scale flow production of ethyl 1 H-1,2,3-triazole-4-carboxylate, showed excellent metabolic stability in human liver microsomes and in vivo half-lives of up to 1.53 h in mice. When orally administered to infected mice, parasitaemia was reduced but without complete removal of the parasites.


Subject(s)
Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/therapeutic use , Dipeptides/therapeutic use , Nitriles/therapeutic use , Triazoles/therapeutic use , Trypanocidal Agents/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Binding Sites , Cell Line , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/pharmacokinetics , Cysteine Proteinase Inhibitors/toxicity , Dipeptides/chemical synthesis , Dipeptides/pharmacokinetics , Dipeptides/toxicity , Drug Design , Female , Humans , Leishmania donovani/drug effects , Ligands , Mice , Microsomes, Liver/metabolism , Molecular Structure , Nitriles/chemical synthesis , Nitriles/pharmacokinetics , Nitriles/toxicity , Plasmodium falciparum/drug effects , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/chemistry , Rats , Structure-Activity Relationship , Swine , Triazoles/chemical synthesis , Triazoles/pharmacokinetics , Triazoles/toxicity , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/pharmacokinetics , Trypanocidal Agents/toxicity , Trypanosoma brucei rhodesiense/drug effects , Trypanosoma cruzi/drug effects
17.
J Med Chem ; 61(8): 3350-3369, 2018 04 26.
Article in English | MEDLINE | ID: mdl-29590750

ABSTRACT

Rhodesain (RD) is a parasitic, human cathepsin L (hCatL) like cysteine protease produced by Trypanosoma brucei ( T. b.) species and a potential drug target for the treatment of human African trypanosomiasis (HAT). A library of hCatL inhibitors was screened, and macrocyclic lactams were identified as potent RD inhibitors ( Ki < 10 nM), preventing the cell-growth of Trypanosoma brucei rhodesiense (IC50 < 400 nM). SARs addressing the S2 and S3 pockets of RD were established. Three cocrystal structures with RD revealed a noncovalent binding mode of this ligand class due to oxidation of the catalytic Cys25 to a sulfenic acid (Cys-SOH) during crystallization. The P-glycoprotein efflux ratio was measured and the in vivo brain penetration in rats determined. When tested in vivo in acute HAT model, the compounds permitted up to 16.25 (vs 13.0 for untreated controls) mean days of survival.


Subject(s)
Cathepsin L/antagonists & inhibitors , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/pharmacology , Lactams, Macrocyclic/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Animals , Binding Sites , Blood-Brain Barrier/metabolism , Cell Line , Cysteine Endopeptidases/chemistry , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacokinetics , Drug Repositioning , Humans , Lactams, Macrocyclic/chemical synthesis , Lactams, Macrocyclic/chemistry , Lactams, Macrocyclic/pharmacokinetics , Ligands , Male , Mice, Inbred C57BL , Molecular Structure , Rats , Structure-Activity Relationship , Swine , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacokinetics
18.
Biochem Pharmacol ; 146: 151-164, 2017 12 15.
Article in English | MEDLINE | ID: mdl-28987592

ABSTRACT

In several types of antigen-presenting cells (APCs), Cathepsin S (CatS) plays a crucial role in the regulation of MHC class II surface expression and consequently influences antigen (Ag) presentation of APCs to CD4+ T cells. During the assembly of MHC class II-Ag peptide complexes, CatS cleaves the invariant chain p10 (Lip10) - a fragment of the MHC class II-associated invariant chain peptide. In this report, we used a selective, high-affinity CatS inhibitor to suppress the proteolytic activity of CatS in lymphoid and myeloid cells. CatS inhibition resulted in a concentration-dependent Lip10 accumulation in B cells from both healthy donors and patients with systemic lupus erythematosus (SLE). Furthermore, CatS inhibition led to a decreased MHC class II expression on B cells, monocytes, and proinflammatory macrophages. In SLE patient-derived peripheral blood mononuclear cells, CatS inhibition led to a suppressed secretion of IL-6, TNFα, and IL-10. In a second step, we tested the effect of CatS inhibition on macrophages being exposed to patient-derived autoantibodies against C1q (anti-C1q) that are known to be associated with severe lupus nephritis. As shown previously, those SLE patient-derived high-affinity anti-C1q bound to immobilized C1q induce a proinflammatory phenotype in macrophages. Using this human in vitro model of autoimmunity, we found that CatS inhibition reduces the inflammatory responses of macrophages as demonstrated by a decreased secretion of proinflammatory cytokines, the downregulation of MHC class II and CD80. In summary, we can show that the used CatS inhibitor is able to block Lip10 degradation in healthy donor- and SLE patient-derived B cells and inhibits the induction of proinflammatory macrophages. Thus, CatS inhibition seems to be a promising future treatment of SLE.


Subject(s)
Cathepsins/antagonists & inhibitors , Inflammation/metabolism , Lupus Erythematosus, Systemic/immunology , Macrophages/metabolism , Adult , Aged , Antigens, CD20/genetics , Antigens, CD20/metabolism , Antigens, Surface , B-Lymphocytes , Cells, Cultured , Cytokines , Female , Humans , Male , Middle Aged , Young Adult
19.
ChemMedChem ; 12(3): 257-270, 2017 02 03.
Article in English | MEDLINE | ID: mdl-27992115

ABSTRACT

We report an extensive "heteroarene scan" of triazine nitrile ligands of the cysteine protease human cathepsin L (hCatL) to investigate π-stacking on the peptide amide bond Gly67-Gly68 at the entrance of the S3 pocket. This heteroarene⋅⋅⋅peptide bond stacking was supported by a co-crystal structure of an imidazopyridine ligand with hCatL. Inhibitory constants (Ki ) are strongly influenced by the diverse nature of the heterocycles and specific interactions with the local environment of the S3 pocket. Binding affinities vary by three orders of magnitude. All heteroaromatic ligands feature enhanced binding by comparison with hydrocarbon analogues. Predicted energetic contributions from the orientation of the local dipole moments of heteroarene and peptide bond could not be confirmed. Binding of benzothienyl (Ki =4 nm) and benzothiazolyl (Ki =17 nm) ligands was enhanced by intermolecular C-S⋅⋅⋅O=C interactions (chalcogen bonding) with the backbone C=O of Asn66 in the S3 pocket. The ligands were also tested for the related enzyme rhodesain.


Subject(s)
Cathepsin L/metabolism , Chalcogens/chemistry , Nitriles/metabolism , Triazines/chemistry , Amides/chemistry , Binding Sites , Cathepsin L/antagonists & inhibitors , Crystallography, X-Ray , Humans , Ligands , Molecular Dynamics Simulation , Nitriles/chemical synthesis , Nitriles/chemistry , Protein Binding , Protein Structure, Tertiary , Quantum Theory
20.
Sci Rep ; 7(1): 2775, 2017 06 05.
Article in English | MEDLINE | ID: mdl-28584258

ABSTRACT

Cathepsin(Cat)-S processing of the invariant chain-MHC-II complex inside antigen presenting cells is a central pathomechanism of autoimmune-diseases. Additionally, Cat-S is released by activated-myeloid cells and was recently described to activate protease-activated-receptor-(PAR)-2 in extracellular compartments. We hypothesized that Cat-S blockade targets both mechanisms and elicits synergistic therapeutic effects on autoimmune tissue injury. MRL-(Fas)lpr mice with spontaneous autoimmune tissue injury were treated with different doses of Cat-S inhibitor RO5459072, mycophenolate mofetil or vehicle. Further, female MRL-(Fas)lpr mice were injected with recombinant Cat-S with/without concomitant Cat-S or PAR-2 blockade. Cat-S blockade dose-dependently reversed aberrant systemic autoimmunity, e.g. plasma cytokines, activation of myeloid cells and hypergammaglobulinemia. Especially IgG autoantibody production was suppressed. Of note (MHC-II-independent) IgM were unaffected by Cat-S blockade while they were suppressed by MMF. Cat-S blockade dose-dependently suppressed immune-complex glomerulonephritis together with a profound and early effect on proteinuria, which was not shared by MMF. In fact, intravenous Cat-S injection induced severe glomerular endothelial injury and albuminuria, which was entirely prevented by Cat-S or PAR-2 blockade. In-vitro studies confirm that Cat-S induces endothelial activation and injury via PAR-2. Therapeutic Cat-S blockade suppresses systemic and peripheral pathomechanisms of autoimmune tissue injury, hence, Cat-S is a promising therapeutic target in lupus nephritis.


Subject(s)
Autoimmune Diseases/etiology , Autoimmune Diseases/pathology , Autoimmunity/drug effects , Cathepsins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Animals , Autoimmune Diseases/drug therapy , Cathepsins/adverse effects , Disease Models, Animal , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme Inhibitors/pharmacokinetics , Female , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Lupus Nephritis/drug therapy , Lupus Nephritis/etiology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , Mice , Mice, Inbred MRL lpr , Monocytes/drug effects , Monocytes/immunology , Monocytes/metabolism , Neutrophils/drug effects , Neutrophils/immunology , Neutrophils/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL