Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Stem Cells ; 37(6): 766-778, 2019 06.
Article in English | MEDLINE | ID: mdl-30786091

ABSTRACT

Aberrant wound healing presents as inappropriate or insufficient tissue formation. Using a model of musculoskeletal injury, we demonstrate that loss of transforming growth factor-ß activated kinase 1 (TAK1) signaling reduces inappropriate tissue formation (heterotopic ossification) through reduced cellular differentiation. Upon identifying increased proliferation with loss of TAK1 signaling, we considered a regenerative approach to address insufficient tissue production through coordinated inactivation of TAK1 to promote cellular proliferation, followed by reactivation to elicit differentiation and extracellular matrix production. Although the current regenerative medicine paradigm is centered on the effects of drug treatment ("drug on"), the impact of drug withdrawal ("drug off") implicit in these regimens is unknown. Because current TAK1 inhibitors are unable to phenocopy genetic Tak1 loss, we introduce the dual-inducible COmbinational Sequential Inversion ENgineering (COSIEN) mouse model. The COSIEN mouse model, which allows us to study the response to targeted drug treatment ("drug on") and subsequent withdrawal ("drug off") through genetic modification, was used here to inactivate and reactivate Tak1 with the purpose of augmenting tissue regeneration in a calvarial defect model. Our study reveals the importance of both the "drug on" (Cre-mediated inactivation) and "drug off" (Flp-mediated reactivation) states during regenerative therapy using a mouse model with broad utility to study targeted therapies for disease. Stem Cells 2019;37:766-778.


Subject(s)
Bone Regeneration/drug effects , Fractures, Bone/genetics , MAP Kinase Kinase Kinases/genetics , Mesenchymal Stem Cells/enzymology , Osteoblasts/enzymology , Wound Healing/genetics , Animals , Bone Regeneration/genetics , Cell Differentiation/drug effects , Cell Proliferation/drug effects , DNA Nucleotidyltransferases/genetics , DNA Nucleotidyltransferases/metabolism , Female , Founder Effect , Fractures, Bone/drug therapy , Fractures, Bone/enzymology , Fractures, Bone/pathology , Gene Expression Regulation , Integrases/genetics , Integrases/metabolism , MAP Kinase Kinase Kinases/antagonists & inhibitors , MAP Kinase Kinase Kinases/deficiency , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Osteoblasts/cytology , Osteoblasts/drug effects , Primary Cell Culture , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Skull/drug effects , Skull/injuries , Skull/metabolism , Wound Healing/drug effects
2.
Am J Pathol ; 188(11): 2464-2473, 2018 11.
Article in English | MEDLINE | ID: mdl-30142335

ABSTRACT

Heterotopic ossification (HO) occurs secondary to trauma, causing pain and functional limitations. Identification of the cells that contribute to HO is critical to the development of therapies. Given that innate immune cells and mesenchymal stem cells are known contributors to HO, we sought to define the contribution of these populations to HO and to identify what, if any, contribution circulating populations have to HO. A shared circulation was obtained using a parabiosis model, established between an enhanced green fluorescent protein-positive/luciferase+ donor and a same-strain nonreporter recipient mouse. The nonreporter mouse received Achilles tendon transection and dorsal burn injury to induce HO formation. Bioluminescence imaging and immunostaining were performed to define the circulatory contribution of immune and mesenchymal cell populations. Histologic analysis showed circulating cells present throughout each stage of the developing HO anlagen. Circulating cells were present at the injury site during the inflammatory phase and proliferative period, with diminished contribution in mature HO. Immunostaining demonstrated that most early circulatory cells were from the innate immune system; only a small population of mesenchymal cells were present in the HO. We demonstrate the time course of the participation of circulatory cells in trauma-induced HO and identify populations of circulating cells present in different stages of HO. These findings further elucidate the relative contribution of local and systemic cell populations to HO.


Subject(s)
Burns/complications , Disease Models, Animal , Inflammation/pathology , Mesenchymal Stem Cells/pathology , Ossification, Heterotopic/pathology , Animals , Female , Inflammation/blood , Inflammation/etiology , Mice , Mice, Inbred C57BL , Ossification, Heterotopic/blood , Ossification, Heterotopic/etiology , Osteogenesis , Signal Transduction
3.
Cell Tissue Res ; 368(1): 105-114, 2017 04.
Article in English | MEDLINE | ID: mdl-27834018

ABSTRACT

VACM-1/CUL5 is a member of the cullin family of proteins involved in the E3 ligase-dependent degradation of diverse proteins that regulate cellular proliferation. The ability of VACM-1/CUL5 to inhibit cellular growth is affected by its posttranslational modifications and its localization to the nucleus. Since the mechanism of VACM-1/CUL5 translocation to the nucleus is not clear, the goal of this project was to determine the role that the putative nuclear localization signal (NLS) we identified in the VACM-1/CUL5 (640PKLKRQ646) plays in the cellular localization of VACM-1/CUL5 and its effect on cellular growth. We used site-directed mutagenesis to change Lys642 and Lys644 to Gly and the mutated cDNA constructs were transfected into COS-1 cells. Mutation of the NLS in VACM-1/CUL5 significantly reduced its localization to the nucleus and compromised its effect on cellular growth. We have shown previously that the antiproliferative effect of VACM-1/CUL5 could be reversed by mutation of PKA-specific phosphorylation sequence (S730AVACM-1/CUL5), which was associated with its increased nuclear localization and modification by NEDD8. Thus, we examined whether these properties can be controlled by the NLS. The mutation of NLS in S730AVACM-1/CUL5 cDNA compromised its proliferative effect and reduced its localization to the nucleus. The immunocytochemistry results showed that, in cells transfected with the mutant cDNAs, the nuclear NEDD8 signal was decreased. Western blot analysis of total cell lysates, however, showed that VACM-1/CUL5 neddylation was not affected. Together, these results suggest that the presence of the NLS, both in VACM-1/CUL5 and in S730AVACM-1/CUL5 sequences, is critical for their control of cell proliferation.


Subject(s)
Cullin Proteins/metabolism , Nuclear Localization Signals/metabolism , Amino Acid Sequence , Animals , COS Cells , Cell Proliferation , Chlorocebus aethiops , Cullin Proteins/chemistry , Humans , Nuclear Localization Signals/chemistry , Protein Transport , Sequence Analysis, Protein , Structure-Activity Relationship , Transfection
4.
JAMA Surg ; 153(12): 1111-1119, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30140896

ABSTRACT

Importance: In 2014, the US Drug Enforcement Administration moved hydrocodone-containing analgesics from schedule III to the more restrictive schedule II to limit prescribing and decrease nonmedical opioid use. The association of this policy change with postoperative prescribing is not well understood. Objective: To examine the hypothesis that the amount of opioids prescribed following surgery is associated with the rescheduling of hydrocodone. Design, Setting, and Participants: An interrupted time series analysis of outpatient opioid prescriptions was conducted to examine the trends in the amount of postoperative opioids filled before and after the schedule change. Opioid prescriptions filled between January 2012 and October 2015 were analyzed using insurance claims data from the Michigan Value Collaborative, which includes data from 75 hospitals across Michigan. A total of 21 955 adult inpatients 18 to 64 years of age who underwent 1 of 19 common elective surgical procedures and filled an opioid prescription within 14 days of discharge to home were eligible for inclusion. Main Outcomes and Measures: The primary outcome was the trends in the mean amount of opioids filled in oral morphine equivalents (OMEs) for the initial postoperative prescriptions before and after the schedule change date of October 6, 2014, compared using interrupted time series and multivariable regression analyses. Secondary outcomes included the total amount of opioids filled and the refill rate for the 30-day postoperative period. Subgroup analyses were performed by hydrocodone prescriptions, nonhydrocodone prescriptions, surgical procedure, and prior opioid use. Results: Data from 21 955 patients undergoing surgical procedures across 75 hospitals and 5120 prescribers were analyzed. Cohorts before and after the schedule change were equivalent with respect to sex (10 197 of 15 791 [64.6%] vs 3966 of 6169 [64.3%] female; P = .69) and mean (SE) age (47.9 [11.2] vs 47.7 [11.3] years; P = .19). After the schedule change, the mean OMEs filled in the initial opioid prescription increased by approximately 35 OMEs (ß = 35.1 [13.2]; P < .01), equivalent to 7 tablets of hydrocodone (5 mg). There were no significant differences in the total OMEs filled during the 30-day postoperative period before and after the schedule change (ß = 18.3 [30.5]; P = .55), but there was a significant decrease in the refill rate (ß = -5.2% [1.3%]; P < .001). Conclusions and Relevance: Changing hydrocodone from schedule III to schedule II was associated with an increase in the amount of opioids filled in the initial prescription following surgery. Opioid-related policies require close follow-up to identify and address early unintended effects given the multitude of competing factors that influence health care professional prescribing behaviors.


Subject(s)
Analgesics, Opioid/therapeutic use , Drug Prescriptions/statistics & numerical data , Hydrocodone/therapeutic use , Pain, Postoperative/drug therapy , Practice Patterns, Physicians'/statistics & numerical data , Prescription Drug Diversion/legislation & jurisprudence , Adolescent , Adult , Aged , Drug Administration Schedule , Female , Humans , Interrupted Time Series Analysis , Male , Middle Aged , Regression Analysis , Retrospective Studies , Young Adult
5.
Bone ; 109: 49-55, 2018 04.
Article in English | MEDLINE | ID: mdl-29412179

ABSTRACT

PURPOSE: Early treatment of heterotopic ossification (HO) is currently limited by delayed diagnosis due to limited visualization at early time points. In this study, we validate the use of spectral ultrasound imaging (SUSI) in an animal model to detect HO as early as one week after burn tenotomy. METHODS: Concurrent SUSI, micro CT, and histology at 1, 2, 4, and 9weeks post-injury were used to follow the progression of HO after an Achilles tenotomy and 30% total body surface area burn (n=3-5 limbs per time point). To compare the use of SUSI in different types of injury models, mice (n=5 per group) underwent either burn/tenotomy or skin incision injury and were imaged using a 55MHz probe on VisualSonics VEVO 770 system at one week post injury to evaluate the ability of SUSI to distinguish between edema and HO. Average acoustic concentration (AAC) and average scatterer diameter (ASD) were calculated for each ultrasound image frame. Micro CT was used to calculate the total volume of HO. Histology was used to confirm bone formation. RESULTS: Using SUSI, HO was visualized as early as 1week after injury. HO was visualized earliest by 4weeks after injury by micro CT. The average acoustic concentration of HO was 33% more than that of the control limb (n=5). Spectroscopic foci of HO present at 1week that persisted throughout all time points correlated with the HO present at 9weeks on micro CT imaging. CONCLUSION: SUSI visualizes HO as early as one week after injury in an animal model. SUSI represents a new imaging modality with promise for early diagnosis of HO.


Subject(s)
Ossification, Heterotopic/diagnostic imaging , Ossification, Heterotopic/diagnosis , Ultrasonography/methods , Animals , Disease Models, Animal , Early Diagnosis , Mice , Ossification, Heterotopic/pathology , Ossification, Heterotopic/surgery , Osteogenesis/physiology , Tenotomy
6.
Article in English | MEDLINE | ID: mdl-28484423

ABSTRACT

PURPOSE: Heterotopic ossification (HO) occurs in the setting of persistent systemic inflammation. The identification of reliable biomarkers can serve as an early diagnostic tool for HO, especially given the current lack of effective treatment strategies. Although serum biomarkers have great utility, they can be inappropriate or ineffective in traumatic acute injuries and in patients with fibrodysplasia ossificans progressiva (FOP). Therefore, the goal of this study is to profile the cytokines associated with HO using a different non-invasive source of biomarkers. METHODS: Serum and saliva were collected from a model of trauma-induced HO (tHO) with hind limb Achilles' tenotomy and dorsal burn injury at indicated time points (pre-injury, 48 h, 1 week, and 3 weeks post-injury) and a genetic non-trauma HO model (Nfatc1-Cre/caAcvr1fl/wt ). Samples were analyzed for 27 cytokines using the Bio-Plex assay. Histologic evaluation was performed in Nfatc1-Cre/caAcvr1fl/wt mice and at 48 h and 1 week post-injury in burn tenotomy mice. The mRNA expression levels of these cytokines at the tenotomy site were also quantified with quantitative real-time PCR. Pearson correlation coefficient was assessed between saliva and serum. RESULTS: Levels of TNF-α and IL-1ß peaked at 48 h and 1 week post-injury in the burn/tenotomy cohort, and these values were significantly higher when compared with both uninjured (p < 0.01, p < 0.03) and burn-only mice (p < 0.01, p < 0.01). Immunofluorescence staining confirmed enhanced expression of IL-1ß, TNF-α, and MCP-1 at the tenotomy site 48 h after injury. Monocyte chemoattractant protein-1 (MCP-1) and VEGF was detected in saliva showing elevated levels at 1 week post-injury in our tHO model when compared with both uninjured (p < 0.001, p < 0.01) and burn-only mice (p < 0.005, p < 0.01). The Pearson correlation between serum MCP-1 and salivary MCP-1 was statistically significant (r = 0.9686, p < 0.001) Similarly, the Pearson correlation between serum VEGF and salivary VEGF was statistically significant (r = 0.9709, p < 0.05). CONCLUSION: In this preliminary study, we characterized the diagnostic potential of specific salivary cytokines that may serve as biomarkers for an early-stage diagnosis of HO. This study identified two candidate biomarkers for further study and suggests a novel method for diagnosis in the context of current difficult diagnosis and risks of current diagnostic methods in certain patients.

7.
JCI Insight ; 1(20): e89805, 2016 12 08.
Article in English | MEDLINE | ID: mdl-27942591

ABSTRACT

Muscle trauma is highly morbid due to intramuscular scarring, or fibrosis, and muscle atrophy. Studies have shown that bone morphogenetic proteins (BMPs) reduce muscle atrophy. However, increased BMP signaling at muscle injury sites causes heterotopic ossification, as seen in patients with fibrodysplasia ossificans progressiva (FOP), or patients with surgically placed BMP implants for bone healing. We use a genetic mouse model of hyperactive BMP signaling to show the development of intramuscular fibrosis surrounding areas of ectopic bone following muscle injury. Rapamycin, which we have previously shown to eliminate ectopic ossification in this model, also eliminates fibrosis without reducing osteogenic differentiation, suggesting clinical value for patients with FOP and with BMP implants. Finally, we use reporter mice to show that BMP signaling is positively associated with myofiber cross-sectional area. These findings underscore an approach in which 2 therapeutics (rapamycin and BMP ligand) can offset each other, leading to an improved outcome.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Myositis Ossificans/pathology , Ossification, Heterotopic/pathology , Signal Transduction , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cell Differentiation , Cells, Cultured , Fibroblasts/cytology , Fibrosis , Humans , Mice , Mice, Transgenic , Muscle, Skeletal/physiopathology , Myositis Ossificans/metabolism , Ossification, Heterotopic/metabolism , Osteogenesis , Regeneration , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL