Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Mol Biol Rep ; 51(1): 906, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141163

ABSTRACT

BACKGROUND: Dengue virus (DENV) and Chikungunya virus (CHIKV) are major arboviruses that are transmitted to humans by Aedes aegypti (A. aegypti) and Aedes Albopictus (A. Albopictus) mosquitoes. In absence of specific antivirals and vaccine against these two viruses, prompt diagnosis of acute infections and robust surveillance for outbreak identification remain crucial. Therefore, rapid, robust, high-throughput, accessible, and low-cost assays are essential for endemic countries. This study evaluated our recently developed multiplex RT-PCR and RT-qPCR assays to screen for DENV1-4 and CHIKV circulation in Burkina Faso. METHODS AND RESULTS: This study, conducted between June to August 2023, enrolled patients with suspected arbovirus infection presenting at healthcare facilities in three Burkina Faso cities (Bobo-Dioulasso, Houndé, and Ouagadougou). Serum samples were collected and screened for DENV serotypes and CHIKV using our newly multiplex RT-PCR and RT-q PCR techniques recently developed. A total of 408 patients (age median = 33, range from 3 to 84 years) participated in this study. Of these, 13.7% (56/408) had DENV infection; DENV-1 was 32.1% (18/56) and DENV-3 was 67.9% (38/56). DENV-2, DENV-4 and CHIKV were not detected. CONCLUSIONS: This study demonstrates the effectiveness of our molecular methods for DENV detection and serotyping in Burkina Faso. The affordability of our methods makes them valuable for implementing widespread routine clinical diagnostics or arbovirus surveillance in resource-limited settings.


Subject(s)
Chikungunya Fever , Chikungunya virus , Dengue Virus , Dengue , Humans , Burkina Faso/epidemiology , Dengue Virus/genetics , Dengue Virus/isolation & purification , Chikungunya virus/genetics , Chikungunya virus/isolation & purification , Middle Aged , Dengue/epidemiology , Dengue/virology , Dengue/diagnosis , Dengue/blood , Female , Adult , Adolescent , Chikungunya Fever/epidemiology , Chikungunya Fever/virology , Chikungunya Fever/diagnosis , Chikungunya Fever/blood , Aged , Male , Child, Preschool , Child , Serogroup , Aged, 80 and over , Multiplex Polymerase Chain Reaction/methods , Young Adult , Epidemiological Monitoring , Animals , Aedes/virology
2.
Eur J Immunol ; 52(2): 270-284, 2022 02.
Article in English | MEDLINE | ID: mdl-34773640

ABSTRACT

Recognition of pathogen-associated molecular patterns (PAMPs) through Toll-like receptors (TLRs) plays a pivotal role in first-line pathogen defense. TLRs are also likely triggered during a Plasmodium infection in vivo by parasite-derived components. However, the contribution of innate responses to liver infection and to the subsequent clinical outcome of a blood infection is not well understood. To assess the potential effects of enhanced TLR-signalling on Plasmodium infection, we systematically examined the effect of agonist-primed immune responses to sporozoite inoculation in the P. berghei/C57Bl/6 murine malaria model. We could identify distinct stage-specific effects on the course of infection after stimulation with two out of four TLR-ligands tested. Priming with a TLR9 agonist induced killing of pre-erythrocytic stages in the liver that depended on macrophages and the expression of inducible nitric oxide synthase (iNOS). These factors have previously not been recognized as antigen-independent effector mechanisms against Plasmodium liver stages. Priming with TLR4 and -9 agonists also translated into blood stage-specific protection against experimental cerebral malaria (ECM). These insights are relevant to the activation of TLR signalling pathways by adjuvant systems of antimalaria vaccine strategies. The protective role of TLR4-activation against ECM might also explain some unexpected clinical effects observed with pre-erythrocytic vaccine approaches.


Subject(s)
Liver Diseases , Liver , Macrophage Activation , Macrophages/immunology , Malaria , Plasmodium berghei/immunology , Signal Transduction , Toll-Like Receptor 9/immunology , Animals , Female , Liver/immunology , Liver/parasitology , Liver Diseases/genetics , Liver Diseases/immunology , Liver Diseases/parasitology , Malaria/genetics , Malaria/immunology , Mice , Mice, Transgenic , Signal Transduction/genetics , Signal Transduction/immunology , Toll-Like Receptor 9/genetics
3.
BMC Med ; 19(1): 217, 2021 09 30.
Article in English | MEDLINE | ID: mdl-34587957

ABSTRACT

BACKGROUND: Stratifying dengue risk within endemic countries is crucial for allocating limited control interventions. Current methods of monitoring dengue transmission intensity rely on potentially inaccurate incidence estimates. We investigated whether incidence or alternate metrics obtained from standard, or laboratory, surveillance operations represent accurate surrogate indicators of the burden of dengue and can be used to monitor the force of infection (FOI) across urban centres. METHODS: Among those who reported and resided in 13 cities across the Philippines, we collected epidemiological data from all dengue case reports between 2014 and 2017 (N 80,043) and additional laboratory data from a cross-section of sampled case reports (N 11,906) between 2014 and 2018. At the city level, we estimated the aggregated annual FOI from age-accumulated IgG among the non-dengue reporting population using catalytic modelling. We compared city-aggregated FOI estimates to aggregated incidence and the mean age of clinically and laboratory diagnosed dengue cases using Pearson's Correlation coefficient and generated predicted FOI estimates using regression modelling. RESULTS: We observed spatial heterogeneity in the dengue average annual FOI across sampled cities, ranging from 0.054 [0.036-0.081] to 0.249 [0.223-0.279]. Compared to FOI estimates, the mean age of primary dengue infections had the strongest association (ρ -0.848, p value<0.001) followed by the mean age of those reporting with warning signs (ρ -0.642, p value 0.018). Using regression modelling, we estimated the predicted annual dengue FOI across urban centres from the age of those reporting with primary infections and revealed prominent spatio-temporal heterogeneity in transmission intensity. CONCLUSIONS: We show the mean age of those reporting with their first dengue infection or those reporting with warning signs of dengue represent superior indicators of the dengue FOI compared to crude incidence across urban centres. Our work provides a framework for national dengue surveillance to routinely monitor transmission and target control interventions to populations most in need.


Subject(s)
Dengue , Cities/epidemiology , Dengue/epidemiology , Humans , Incidence , Laboratories , Philippines/epidemiology
4.
PLoS Biol ; 16(4): e2003538, 2018 04.
Article in English | MEDLINE | ID: mdl-29652925

ABSTRACT

The immune state of wild animals is largely unknown. Knowing this and what affects it is important in understanding how infection and disease affects wild animals. The immune state of wild animals is also important in understanding the biology of their pathogens, which is directly relevant to explaining pathogen spillover among species, including to humans. The paucity of knowledge about wild animals' immune state is in stark contrast to our exquisitely detailed understanding of the immunobiology of laboratory animals. Making an immune response is costly, and many factors (such as age, sex, infection status, and body condition) have individually been shown to constrain or promote immune responses. But, whether or not these factors affect immune responses and immune state in wild animals, their relative importance, and how they interact (or do not) are unknown. Here, we have investigated the immune ecology of wild house mice-the same species as the laboratory mouse-as an example of a wild mammal, characterising their adaptive humoral, adaptive cellular, and innate immune state. Firstly, we show how immune variation is structured among mouse populations, finding that there can be extensive immune discordance among neighbouring populations. Secondly, we identify the principal factors that underlie the immunological differences among mice, showing that body condition promotes and age constrains individuals' immune state, while factors such as microparasite infection and season are comparatively unimportant. By applying a multifactorial analysis to an immune system-wide analysis, our results bring a new and unified understanding of the immunobiology of a wild mammal.


Subject(s)
Adaptive Immunity , Flea Infestations/immunology , Immunity, Humoral , Immunity, Innate , Nematode Infections/immunology , Tick Infestations/immunology , Animals , Animals, Wild , Biological Variation, Population/immunology , Dendritic Cells/cytology , Dendritic Cells/immunology , Ecology , Female , Flea Infestations/parasitology , Genetic Variation/immunology , Host-Parasite Interactions/immunology , Lymphocytes/classification , Lymphocytes/cytology , Lymphocytes/immunology , Male , Mice , Multivariate Analysis , Nematode Infections/parasitology , Seasons , Tick Infestations/parasitology , United Kingdom
5.
Parasite Immunol ; 43(2): e12795, 2021 02.
Article in English | MEDLINE | ID: mdl-32981095

ABSTRACT

Radiation-attenuated sporozoites induce sterilizing immunity and remain the 'gold standard' for malaria vaccine development. Despite practical challenges in translating these whole sporozoite vaccines to large-scale intervention programmes, they have provided an excellent platform to dissect the immune responses to malaria pre-erythrocytic (PE) stages, comprising both sporozoites and exoerythrocytic forms. Investigations in rodent models have provided insights that led to the clinical translation of various vaccine candidates-including RTS,S/AS01, the most advanced candidate currently in a trial implementation programme in three African countries. With advances in immunology, transcriptomics and proteomics, and application of lessons from past failures, an effective, long-lasting and wide-scale malaria PE vaccine remains feasible. This review underscores the progress in PE vaccine development, focusing on our understanding of host-parasite immunological crosstalk in the tissue environments of the skin and the liver. We highlight possible gaps in the current knowledge of PE immunity that can impact future malaria vaccine development efforts.


Subject(s)
Erythrocytes/parasitology , Malaria Vaccines/immunology , Malaria/immunology , Sporozoites/immunology , Africa , Animals , Antibodies, Protozoan , Humans , Immunity , Immunity, Cellular , Life Cycle Stages/immunology , Liver/immunology , Skin/immunology
6.
Parasite Immunol ; 43(12): e12877, 2021 12.
Article in English | MEDLINE | ID: mdl-34515999

ABSTRACT

Sporozoite antigens are the basis of a number of malaria vaccines being tested, but the contribution of antigens expressed during subsequent liver stage development to pre-erythrocytic stage immunity is poorly understood. We previously showed that, following immunisation with radiation attenuated sporozoites (RAS), a model epitope embedded in a sporozoite surface protein elicited robust CD8+ T cell responses, whilst the same epitope in a liver stage antigen induced inferior responses. Since RAS arrest early in their development in host hepatocytes, we hypothesised that extending parasite maturation in the liver could considerably improve the epitope-specific CD8+ T cell response. Here, we employed a late liver stage arrested parasite model, azithromycin prophylaxis alongside live sporozoites, to increase expression of the model epitope until full liver stage maturation. Strikingly, this alternative immunisation strategy, which has been shown to elicit superior protection, failed to improve the resulting epitope-specific CD8+ T cell responses. Our findings support the notion that liver stage antigens are poorly immunogenic and provide additional caution about prioritising antigens for vaccine development based solely on immunogenicity.


Subject(s)
Malaria Vaccines , Plasmodium berghei , Animals , Antigens, Protozoan , CD8-Positive T-Lymphocytes , Liver/parasitology , Sporozoites
7.
Infect Immun ; 88(10)2020 09 18.
Article in English | MEDLINE | ID: mdl-32719159

ABSTRACT

The circumsporozoite protein (CSP) builds up the surface coat of sporozoites and is the leading malaria pre-erythrocytic-stage vaccine candidate. CSP has been shown to induce robust CD8+ T cell responses that are capable of eliminating developing parasites in hepatocytes, resulting in protective immunity. In this study, we characterized the importance of the immunodominant CSP-derived epitope SYIPSAEKI of Plasmodium berghei in both sporozoite- and vaccine-induced protection in murine infection models. In BALB/c mice, where SYIPSAEKI is efficiently presented in the context of the major histocompatibility complex class I (MHC-I) molecule H-2-Kd, we established that epitope-specific CD8+ T cell responses contribute to parasite killing following sporozoite immunization. Yet, sterile protection was achieved in the absence of this epitope, substantiating the concept that other antigens can be sufficient for parasite-induced protective immunity. Furthermore, we demonstrated that SYIPSAEKI-specific CD8+ T cell responses elicited by viral-vectored CSP-expressing vaccines effectively targeted parasites in hepatocytes. The resulting sterile protection strictly relied on the expression of SYIPSAEKI. In C57BL/6 mice, which are unable to present the immunodominant epitope, CSP-based vaccines did not confer complete protection, despite the induction of high levels of CSP-specific antibodies. These findings underscore the significance of CSP in protection against malaria pre-erythrocytic stages and demonstrate that a significant proportion of the protection against the parasite is mediated by CD8+ T cells specific for the immunodominant CSP-derived epitope.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria Vaccines/immunology , Malaria/prevention & control , Plasmodium berghei/immunology , Protozoan Proteins/immunology , Animals , Antibodies, Protozoan/blood , Antibodies, Protozoan/immunology , Antigen Presentation , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Disease Models, Animal , Epitopes, T-Lymphocyte/chemistry , Immunization , Malaria/immunology , Malaria/parasitology , Malaria Vaccines/administration & dosage , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peptide Fragments , Protozoan Proteins/chemistry , Species Specificity , Sporozoites/immunology
8.
BMC Med ; 18(1): 364, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33243267

ABSTRACT

BACKGROUND: In dengue-endemic countries, targeting limited control interventions to populations at risk of severe disease could enable increased efficiency. Individuals who have had their first (primary) dengue infection are at risk of developing more severe secondary disease, thus could be targeted for disease prevention. Currently, there is no reliable algorithm for determining primary and post-primary (infection with more than one flavivirus) status from a single serum sample. In this study, we developed and validated an immune status algorithm using single acute serum samples from reporting patients and investigated dengue immuno-epidemiological patterns across the Philippines. METHODS: During 2015/2016, a cross-sectional sample of 10,137 dengue case reports provided serum for molecular (anti-DENV PCR) and serological (anti-DENV IgM/G capture ELISA) assay. Using mixture modelling, we re-assessed IgM/G seroprevalence and estimated functional, disease day-specific, IgG:IgM ratios that categorised the reporting population as negative, historical, primary and post-primary for dengue. We validated our algorithm against WHO gold standard criteria and investigated cross-reactivity with Zika by assaying a random subset for anti-ZIKV IgM and IgG. Lastly, using our algorithm, we explored immuno-epidemiological patterns of dengue across the Philippines. RESULTS: Our modelled IgM and IgG seroprevalence thresholds were lower than kit-provided thresholds. Individuals anti-DENV PCR+ or IgM+ were classified as active dengue infections (83.1%, 6998/8425). IgG- and IgG+ active dengue infections on disease days 1 and 2 were categorised as primary and post-primary, respectively, while those on disease days 3 to 5 with IgG:IgM ratios below and above 0.45 were classified as primary and post-primary, respectively. A significant proportion of post-primary dengue infections had elevated anti-ZIKV IgG inferring previous Zika exposure. Our algorithm achieved 90.5% serological agreement with WHO standard practice. Post-primary dengue infections were more likely to be older and present with severe symptoms. Finally, we identified a spatio-temporal cluster of primary dengue case reporting in northern Luzon during 2016. CONCLUSIONS: Our dengue immune status algorithm can equip surveillance operations with the means to target dengue control efforts. The algorithm accurately identified primary dengue infections who are at risk of future severe disease.


Subject(s)
Dengue Virus/pathogenicity , Dengue/epidemiology , Adolescent , Adult , Child , Child, Preschool , Cross-Sectional Studies , Female , Humans , Male , Philippines , Young Adult
9.
Malar J ; 19(1): 364, 2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33036624

ABSTRACT

BACKGROUND: The immune mechanisms that determine whether a Plasmodium falciparum infection would be symptomatic or asymptomatic are not fully understood. Several studies have been carried out to characterize the associations between disease outcomes and leucocyte numbers. However, the majority of these studies have been conducted in adults with acute uncomplicated malaria, despite children being the most vulnerable group. METHODS: Peripheral blood leucocyte subpopulations were characterized in children with acute uncomplicated (symptomatic; n = 25) or asymptomatic (n = 67) P. falciparum malaria, as well as malaria-free (uninfected) children (n = 16) from Obom, a sub-district of Accra, Ghana. Leucocyte subpopulations were enumerated by flow cytometry and correlated with two measures of parasite load: (a) plasma levels of P. falciparum histidine-rich protein 2 (PfHRP2) as a proxy for parasite biomass and (b) peripheral blood parasite densities determined by microscopy. RESULTS: In children with symptomatic P. falciparum infections, the proportions and absolute cell counts of total (CD3 +) T cells, CD4 + T cells, CD8 + T cells, CD19 + B cells and CD11c + dendritic cells (DCs) were significantly lower as compared to asymptomatic P. falciparum-infected and uninfected children. Notably, CD15 + neutrophil proportions and cell counts were significantly increased in symptomatic children. There was no significant difference in the proportions and absolute counts of CD14 + monocytes amongst the three study groups. As expected, measures of parasite load were significantly higher in symptomatic cases. Remarkably, PfHRP2 levels and parasite densities negatively correlated with both the proportions and absolute numbers of peripheral leucocyte subsets: CD3 + T, CD4 + T, CD8 + T, CD19 + B, CD56 + NK, γδ + T and CD11c + cells. In contrast, both PfHRP2 levels and parasite densities positively correlated with the proportions and absolute numbers of CD15 + cells. CONCLUSIONS: Symptomatic P. falciparum infection is correlated with an increase in the levels of peripheral blood neutrophils, indicating a role for this cell type in disease pathogenesis. Parasite load is a key determinant of peripheral cell numbers during malaria infections.


Subject(s)
Antigens, Protozoan/analysis , Leukocytes/parasitology , Malaria, Falciparum/parasitology , Parasite Load , Plasmodium falciparum/physiology , Protozoan Proteins/analysis , Asymptomatic Infections , Child , Female , Flow Cytometry , Ghana , Humans , Male
10.
Infect Immun ; 85(6)2017 06.
Article in English | MEDLINE | ID: mdl-28396319

ABSTRACT

The resolution of malaria infection is dependent on a balance between proinflammatory and regulatory immune responses. While early effector T cell responses are required for limiting parasitemia, these responses need to be switched off by regulatory mechanisms in a timely manner to avoid immune-mediated tissue damage. Interleukin-10 receptor (IL-10R) signaling is considered to be a vital component of regulatory responses, although its role in host resistance to severe immune pathology during acute malaria infections is not fully understood. In this study, we have determined the contribution of IL-10R signaling to the regulation of immune responses during Plasmodium berghei ANKA-induced experimental cerebral malaria (ECM). We show that antibody-mediated blockade of the IL-10R during P. berghei ANKA infection in ECM-resistant BALB/c mice leads to amplified T cell activation, higher serum gamma interferon (IFN-γ) concentrations, enhanced intravascular accumulation of both parasitized red blood cells and CD8+ T cells to the brain, and an increased incidence of ECM. Importantly, the pathogenic effects of IL-10R blockade during P. berghei ANKA infection were reversible by depletion of T cells and neutralization of IFN-γ. Our findings underscore the importance of IL-10R signaling in preventing T-cell- and cytokine-mediated pathology during potentially lethal malaria infections.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/blood , Malaria, Cerebral/immunology , Plasmodium berghei/immunology , Receptors, Interleukin-10/immunology , Animals , Antibodies, Blocking/administration & dosage , Antibodies, Neutralizing/administration & dosage , Brain/pathology , CD8-Positive T-Lymphocytes/drug effects , Erythrocytes/drug effects , Erythrocytes/parasitology , Female , Liver/pathology , Lymphocyte Activation/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Parasitemia/immunology , Receptors, Interleukin-10/antagonists & inhibitors , Signal Transduction
11.
Parasite Immunol ; 43(2): e12810, 2021 02.
Article in English | MEDLINE | ID: mdl-33528861
12.
PLoS Pathog ; 9(5): e1003303, 2013 May.
Article in English | MEDLINE | ID: mdl-23675294

ABSTRACT

CD8⁺ T cells mediate immunity against Plasmodium liver stages. However, the paucity of parasite-specific epitopes of CD8⁺ T cells has limited our current understanding of the mechanisms influencing the generation, maintenance and efficiency of these responses. To identify antigenic epitopes in a stringent murine malaria immunisation model, we performed a systematic profiling of H(2b)-restricted peptides predicted from genome-wide analysis. We describe the identification of Plasmodium berghei (Pb) sporozoite-specific gene 20 (S20)- and thrombospondin-related adhesive protein (TRAP)-derived peptides, termed PbS20318 and PbTRAP130 respectively, as targets of CD8⁺ T cells from C57BL/6 mice vaccinated by whole parasite strategies known to protect against sporozoite challenge. While both PbS20318 and PbTRAP130 elicit effector and effector memory phenotypes in both the spleens and livers of immunised mice, only PbTRAP130-specific CD8⁺ T cells exhibit in vivo cytotoxicity. Moreover, PbTRAP130-specific, but not PbS20318-specific, CD8⁺ T cells significantly contribute to inhibition of parasite development. Prime/boost vaccination with PbTRAP demonstrates CD8⁺ T cell-dependent efficacy against sporozoite challenge. We conclude that PbTRAP is an immunodominant antigen during liver-stage infection. Together, our results underscore the presence of CD8⁺ T cells with divergent potencies against distinct Plasmodium liver-stage epitopes. Our identification of antigen-specific CD8⁺ T cells will allow interrogation of the development of immune responses against malaria liver stages.


Subject(s)
Antigens, Protozoan/immunology , CD8-Positive T-Lymphocytes/immunology , Epitopes, T-Lymphocyte/immunology , Malaria/immunology , Amino Acid Sequence , Animals , Antigens, Protozoan/isolation & purification , Epitopes, T-Lymphocyte/isolation & purification , Genome-Wide Association Study , Liver/parasitology , Mice , Mice, Inbred C57BL , Plasmodium berghei , Protozoan Proteins/immunology , Protozoan Proteins/isolation & purification , Sporozoites/immunology
13.
Immunol Rev ; 240(1): 297-316, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21349101

ABSTRACT

Malaria is a vector-borne infectious disease caused by unicellular parasites of the genus Plasmodium. These obligate intracellular parasites have the unique capacity to infect and replicate within erythrocytes, which are terminally differentiated host cells that lack antigen presentation pathways. Prior to the cyclic erythrocytic infections that cause the characteristic clinical symptoms of malaria, the parasite undergoes an essential and clinically silent expansion phase in the liver. By infecting privileged host cells, employing programs of complex life stage conversions and expressing varying immunodominant antigens, Plasmodium parasites have evolved mechanisms to downmodulate protective immune responses against ongoing and even future infections. Consequently, anti-malaria immunity develops only gradually over many years of repeated and multiple infections in endemic areas. The identification of immune correlates of protection among the abundant non-protective host responses remains a research priority. Understanding the molecular and immunological mechanisms of the crosstalk between the parasite and the host is a prerequisite for the rational discovery and development of a safe, affordable, and protective anti-malaria vaccine.


Subject(s)
Host-Pathogen Interactions , Malaria/immunology , Animals , Culicidae/parasitology , Humans , Immunity , Malaria/physiopathology , Malaria/prevention & control , Malaria Vaccines/immunology , Malaria Vaccines/therapeutic use , Malaria, Falciparum/immunology
14.
PLoS Pathog ; 8(2): e1002504, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22319445

ABSTRACT

The balance between pro-inflammatory and regulatory immune responses in determining optimal T cell activation is vital for the successful resolution of microbial infections. This balance is maintained in part by the negative regulators of T cell activation, CTLA-4 and PD-1/PD-L, which dampen effector responses during chronic infections. However, their role in acute infections, such as malaria, remains less clear. In this study, we determined the contribution of CTLA-4 and PD-1/PD-L to the regulation of T cell responses during Plasmodium berghei ANKA (PbA)-induced experimental cerebral malaria (ECM) in susceptible (C57BL/6) and resistant (BALB/c) mice. We found that the expression of CTLA-4 and PD-1 on T cells correlates with the extent of pro-inflammatory responses induced during PbA infection, being higher in C57BL/6 than in BALB/c mice. Thus, ECM develops despite high levels of expression of these inhibitory receptors. However, antibody-mediated blockade of either the CTLA-4 or PD-1/PD-L1, but not the PD-1/PD-L2, pathways during PbA-infection in ECM-resistant BALB/c mice resulted in higher levels of T cell activation, enhanced IFN-γ production, increased intravascular arrest of both parasitised erythrocytes and CD8(+) T cells to the brain, and augmented incidence of ECM. Thus, in ECM-resistant BALB/c mice, CTLA-4 and PD-1/PD-L1 represent essential, independent and non-redundant pathways for maintaining T cell homeostasis during a virulent malaria infection. Moreover, neutralisation of IFN-γ or depletion of CD8(+) T cells during PbA infection was shown to reverse the pathologic effects of regulatory pathway blockade, highlighting that the aetiology of ECM in the BALB/c mice is similar to that in C57BL/6 mice. In summary, our results underscore the differential and complex regulation that governs immune responses to malaria parasites.


Subject(s)
Antigens, Differentiation/immunology , B7-H1 Antigen/immunology , CD8-Positive T-Lymphocytes/immunology , CTLA-4 Antigen/immunology , Plasmodium berghei/pathogenicity , Animals , Antigens, Differentiation/metabolism , B7-H1 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , CTLA-4 Antigen/metabolism , Erythrocytes/parasitology , Interferon-gamma/immunology , Lymphocyte Activation/immunology , Malaria, Cerebral/immunology , Malaria, Cerebral/microbiology , Malaria, Cerebral/pathology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Plasmodium berghei/immunology , Programmed Cell Death 1 Receptor
15.
J Immunol ; 189(2): 968-79, 2012 Jul 15.
Article in English | MEDLINE | ID: mdl-22723523

ABSTRACT

It is well established that IFN-γ is required for the development of experimental cerebral malaria (ECM) during Plasmodium berghei ANKA infection of C57BL/6 mice. However, the temporal and tissue-specific cellular sources of IFN-γ during P. berghei ANKA infection have not been investigated, and it is not known whether IFN-γ production by a single cell type in isolation can induce cerebral pathology. In this study, using IFN-γ reporter mice, we show that NK cells dominate the IFN-γ response during the early stages of infection in the brain, but not in the spleen, before being replaced by CD4(+) and CD8(+) T cells. Importantly, we demonstrate that IFN-γ-producing CD4(+) T cells, but not innate or CD8(+) T cells, can promote the development of ECM in normally resistant IFN-γ(-/-) mice infected with P. berghei ANKA. Adoptively transferred wild-type CD4(+) T cells accumulate within the spleen, lung, and brain of IFN-γ(-/-) mice and induce ECM through active IFN-γ secretion, which increases the accumulation of endogenous IFN-γ(-/-) CD8(+) T cells within the brain. Depletion of endogenous IFN-γ(-/-) CD8(+) T cells abrogates the ability of wild-type CD4(+) T cells to promote ECM. Finally, we show that IFN-γ production, specifically by CD4(+) T cells, is sufficient to induce expression of CXCL9 and CXCL10 within the brain, providing a mechanistic basis for the enhanced CD8(+) T cell accumulation. To our knowledge, these observations demonstrate, for the first time, the importance of and pathways by which IFN-γ-producing CD4(+) T cells promote the development of ECM during P. berghei ANKA infection.


Subject(s)
Brain/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , Cell Movement/immunology , Interferon-gamma/biosynthesis , Malaria, Cerebral/immunology , Malaria, Cerebral/pathology , Adoptive Transfer , Animals , Brain/parasitology , Brain/pathology , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/pathology , Cell Movement/genetics , Disease Models, Animal , Female , Genetic Predisposition to Disease/genetics , Immunity, Innate/genetics , Interferon-gamma/deficiency , Interferon-gamma/genetics , Malaria, Cerebral/parasitology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Plasmodium berghei/immunology
16.
J Immunol ; 188(10): 5054-62, 2012 May 15.
Article in English | MEDLINE | ID: mdl-22504653

ABSTRACT

RTS,S/AS01, a vaccine targeting pre-erythrocytic stages of Plasmodium falciparum, is undergoing clinical trials. We report an analysis of cellular immune response to component Ags of RTS,S-hepatitis B surface Ag (HBs) and P. falciparum circumsporozoite (CS) protein-among Tanzanian children in a phase IIb RTS,S/AS01(E) trial. RTS,S/AS01 (E) vaccinees make stronger T cell IFN-γ, CD69, and CD25 responses to HBs peptides than do controls, indicating that RTS,S boosts pre-existing HBs responses. T cell CD69 and CD25 responses to CS and CS-specific secreted IL-2 were augmented by RTS,S vaccination. Importantly, more than 50% of peptide-induced IFN-γ(+) lymphocytes were NK cells, and the magnitude of the NK cell CD69 response to HBs peptides correlated with secreted IL-2 concentration. CD69 and CD25 expression and IL-2 secretion may represent sensitive markers of RTS,S-induced, CS-specific T cells. The potential for T cell-derived IL-2 to augment NK cell activation in RTS,S-vaccinated individuals, and the relevance of this for protection, needs to be explored further.


Subject(s)
Epitopes/immunology , Interleukin-2/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Malaria Vaccines/administration & dosage , Biomarkers/metabolism , Cells, Cultured , Humans , Infant , Kenya , Killer Cells, Natural/parasitology , Lymphocyte Activation/immunology , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/administration & dosage , Protozoan Proteins/immunology , Protozoan Proteins/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/parasitology , Tanzania
17.
PLoS Negl Trop Dis ; 18(7): e0012334, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39074158

ABSTRACT

Prophylactic drugs against dengue are currently under development. In this study, we explored how such prophylactic approaches might affect dengue cases in four communes of Nha Trang City, Vietnam. A community level dengue transmission survey indicated high levels of previous exposure to dengue (89.7%; 95% CI: 87.2,92.0). We fitted a spatially explicit model to an observed outbreak and simulated likely effectiveness of Case-Area Targeted Interventions (CATI) and One-Time Mass Distribution (OTMD) of drug and vector control strategies. Increasing radius and effectiveness and decreasing delay of CATI was most effective, with drugs being more effective in averting dengue cases than vector control. Using an OTMD approach early in the outbreak required the least number of treatments to avert a case, suggesting that OTMD strategies should be considered as pre-emptive rather than reactive strategies. These findings show that pre-emptive interventions can substantially reduce the burden of dengue outbreaks in endemic settings.


Subject(s)
Antiviral Agents , Dengue , Dengue/epidemiology , Dengue/prevention & control , Humans , Vietnam/epidemiology , Antiviral Agents/therapeutic use , Incidence , Endemic Diseases/prevention & control , Male , Female , Adult , Disease Outbreaks/prevention & control , Adolescent , Prevalence , Young Adult , Child , Middle Aged , Child, Preschool
18.
Sci Rep ; 14(1): 19602, 2024 08 23.
Article in English | MEDLINE | ID: mdl-39179783

ABSTRACT

The Philippines is a high-incidence country for tuberculosis, with the increasing prevalence of multi- (MDR-TB) and extensively-drug (XDR-TB) resistant Mycobacterium tuberculosis strains posing difficulties to disease control. Understanding the genetic diversity of circulating strains can provide insights into underlying drug resistance mutations and transmission dynamics, thereby assisting the design of diagnostic tools, including those using next generation sequencing (NGS) platforms. By analysing genome sequencing data of 732 isolates from Philippines drug-resistance survey collections spanning from 2011 to 2019, we found that the majority belonged to lineages L1 (531/732; 72.5%) and L4 (European-American; n = 174; 23.8%), with the Manila strain (L1.2.1.2.1) being the most prominent (475/531). Approximately two-thirds of isolates were found to be at least MDR-TB (483/732; 66.0%), and potential XDR-TB genotypic resistance was observed (3/732; 0.4%), highlighting an emerging problem in the country. Genotypic resistance was highly concordant with laboratory drug susceptibility testing. By finding isolates with (near-)identical genomic variation, five major clusters containing a total of 114 isolates were identified: all containing either L1 or L4 isolates with at least MDR-TB resistance and spanning multiple years of collection. Closer inspection of clusters revealed transmission in prisons, some involving isolates with XDR-TB, and mutations linked to third-line drug bedaquiline. We have also identified previously unreported mutations linked to resistance for isoniazid, rifampicin, ethambutol, and fluoroquinolones. Overall, this study provides important insights into the genetic diversity, transmission and circulating drug resistance mutations of M. tuberculosis in the Philippines, thereby informing clinical and surveillance decision-making, which is increasingly using NGS platforms.


Subject(s)
Antitubercular Agents , Mutation , Mycobacterium tuberculosis , Tuberculosis, Multidrug-Resistant , Whole Genome Sequencing , Mycobacterium tuberculosis/genetics , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/isolation & purification , Philippines/epidemiology , Humans , Whole Genome Sequencing/methods , Tuberculosis, Multidrug-Resistant/microbiology , Tuberculosis, Multidrug-Resistant/epidemiology , Tuberculosis, Multidrug-Resistant/transmission , Antitubercular Agents/pharmacology , Extensively Drug-Resistant Tuberculosis/microbiology , Extensively Drug-Resistant Tuberculosis/epidemiology , Genome, Bacterial , Drug Resistance, Multiple, Bacterial/genetics , Genotype , Phylogeny , Microbial Sensitivity Tests
19.
PLoS Pathog ; 7(2): e1001281, 2011 Feb 10.
Article in English | MEDLINE | ID: mdl-21347351

ABSTRACT

Immunity to malaria is widely believed to wane in the absence of reinfection, but direct evidence for the presence or absence of durable immunological memory to malaria is limited. Here, we analysed malaria-specific CD4+ T cell responses of individuals living in an area of low malaria transmission in northern Thailand, who had had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. CD4+ T cell effector memory (CD45RO+) IFN-γ (24 hours ex vivo restimulation) and cultured IL-10 (6 day secretion into culture supernatant) responses to malaria schizont antigens were detected only in malaria-exposed subjects and were more prominent in subjects with long-lived antibodies or memory B cells specific to malaria antigens. The number of IFN-γ-producing effector memory T cells declined significantly over the 12 months of the study, and with time since last documented malaria infection, with an estimated half life of the response of 3.3 (95% CI 1.9-10.3) years. In sharp contrast, IL-10 responses were sustained for many years after last known malaria infection with no significant decline over at least 6 years. The observations have clear implications for understanding the immunoepidemiology of naturally acquired malaria infections and for malaria vaccine development.


Subject(s)
CD4-Positive T-Lymphocytes/metabolism , Immunologic Memory/physiology , Interferon-gamma/metabolism , Interleukin-10/metabolism , Malaria/immunology , Adult , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/physiology , Cells, Cultured , Endemic Diseases , Female , Geography , Humans , Malaria/epidemiology , Malaria/metabolism , Male , Middle Aged , Thailand/epidemiology , Time Factors , Young Adult
20.
J Immunol ; 187(6): 2885-97, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21880980

ABSTRACT

IFN-γ and T cells are both required for the development of experimental cerebral malaria during Plasmodium berghei ANKA infection. Surprisingly, however, the role of IFN-γ in shaping the effector CD4(+) and CD8(+) T cell response during this infection has not been examined in detail. To address this, we have compared the effector T cell responses in wild-type and IFN-γ(-/-) mice during P. berghei ANKA infection. The expansion of splenic CD4(+) and CD8(+) T cells during P. berghei ANKA infection was unaffected by the absence of IFN-γ, but the contraction phase of the T cell response was significantly attenuated. Splenic T cell activation and effector function were essentially normal in IFN-γ(-/-) mice; however, the migration to, and accumulation of, effector CD4(+) and CD8(+) T cells in the lung, liver, and brain was altered in IFN-γ(-/-) mice. Interestingly, activation and accumulation of T cells in various nonlymphoid organs was differently affected by lack of IFN-γ, suggesting that IFN-γ influences T cell effector function to varying levels in different anatomical locations. Importantly, control of splenic T cell numbers during P. berghei ANKA infection depended on active IFN-γ-dependent environmental signals--leading to T cell apoptosis--rather than upon intrinsic alterations in T cell programming. To our knowledge, this is the first study to fully investigate the role of IFN-γ in modulating T cell function during P. berghei ANKA infection and reveals that IFN-γ is required for efficient contraction of the pool of activated T cells.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/immunology , Lymphocyte Activation/immunology , Malaria/immunology , Plasmodium berghei/immunology , Animals , Cell Movement/immunology , Cell Separation , Flow Cytometry , Mice , Mice, Inbred C57BL , Mice, Knockout , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL