Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Folia Primatol (Basel) ; 91(6): 558-574, 2020.
Article in English | MEDLINE | ID: mdl-32663822

ABSTRACT

Madagascar's dramatic climatic fluctuations mean most lemurs adjust behaviors seasonally as resource availability fluctuates. Many lemurs will adopt one of two strategies, a resource maximizer or an area minimizer, when adjusting to seasonal shifts in resource availability. However, it is unknown if and how aye-aye (Daubentonia madagascariensis) ranging behavior is influenced by seasonality. We explored whether habitat use changed seasonally. We followed two aye-ayes, an adult male and an adult female, in the undisturbed forest of Torotorofotsy, Madagascar, from April 2012 to December 2017. We used instantaneous focal-animal sampling to collect behavioral data every 5 min and GPS locations every 20 min. We used the minimum convex polygon (MCP) to determine overall home range, and the Brownian bridge movement model (BBMM) to estimate overall and seasonal home range of the female aye-aye from November 2014 to October 2017. We used Wilcoxon signed-rank tests to determine whether there were significant differences in home range sizes between seasons across years and to examine whether there were seasonal differences in height of invertebrate foraging, generalized linear models to assess seasonal differences in travel rates and nesting locations, and χ2 tests to determine whether there were differences in forest strata use when foraging on invertebrates. The male's MCP home range was 2,586 ha, and the female's MCP home range was 765 ha. The seasonal BBMM for the female varied between 443.6 and 1,010.0 ha, though infant rearing appears to have influenced these values. There were no significant differences in seasonal home range, travel rates, nesting locations, or height of invertebrate feeding. However, canopy level invertebrate foraging occurred more often than understory or ground levels. It appears aye-ayes in this undisturbed forest were not influenced by seasonal shifts and had larger home ranges than any previously reported. These findings may indicate that aye-ayes in an undisturbed forest are resource maximizers, closely linked to invertebrate assemblages.


Subject(s)
Ecosystem , Homing Behavior , Strepsirhini , Animals , Appetitive Behavior , Behavior, Animal , Female , Geographic Information Systems , Invertebrates , Locomotion , Madagascar , Male , Nesting Behavior , Seasons
2.
bioRxiv ; 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36711674

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses TP53 signaling, and we show that TP53 mutations are mutually-exclusive with 1q aneuploidy in human cancers. Thus, specific aneuploidies play essential roles in tumorigenesis, raising the possibility that targeting these "aneuploidy addictions" could represent a novel approach for cancer treatment.

3.
Science ; 381(6660): eadg4521, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37410869

ABSTRACT

Most cancers exhibit aneuploidy, but its functional significance in tumor development is controversial. Here, we describe ReDACT (Restoring Disomy in Aneuploid cells using CRISPR Targeting), a set of chromosome engineering tools that allow us to eliminate specific aneuploidies from cancer genomes. Using ReDACT, we created a panel of isogenic cells that have or lack common aneuploidies, and we demonstrate that trisomy of chromosome 1q is required for malignant growth in cancers harboring this alteration. Mechanistically, gaining chromosome 1q increases the expression of MDM4 and suppresses p53 signaling, and we show that TP53 mutations are mutually exclusive with 1q aneuploidy in human cancers. Thus, tumor cells can be dependent on specific aneuploidies, raising the possibility that these "aneuploidy addictions" could be targeted as a therapeutic strategy.


Subject(s)
Cell Cycle Proteins , Gene Editing , Neoplasms , Oncogenes , Trisomy , Tumor Suppressor Protein p53 , Humans , Cell Cycle Proteins/genetics , Mutation , Neoplasms/genetics , Neoplasms/therapy , Proto-Oncogene Proteins/metabolism , Gene Editing/methods , Tumor Suppressor Protein p53/genetics , Carcinogenesis/genetics
4.
Genes (Basel) ; 13(6)2022 06 07.
Article in English | MEDLINE | ID: mdl-35741788

ABSTRACT

The most comprehensive phylogenomic reconstruction to date was generated on all nominal taxa within the lemur genus Propithecus. Over 200 wild-caught individuals were included in this study to evaluate the intra and interspecific relationships across this genus. Ultraconserved Elements (UCEs) resulted in well-supported phylogenomic trees. Complete mitochondrial genomes (CMGs) largely agreed with the UCEs, except where a mitochondrial introgression was detected between one clade of the diademed sifaka (Propithecus diadema) and the Milne-Edwards sifaka (P. edwardsi). Additionally, the crowned (P. coronatus) and Von der Decken's (P. deckeni) sifakas belonged to a single admixed lineage from UCEs. Further sampling across these two species is warranted to determine if our sampling represents a hybrid zone. P. diadema recovered two well-supported clades, which were dated and estimated as being ancient as the split between the Perrier's (P. perrierii) and silky (P. candidus) sifakas. The reconstructed demographic history of the two clades also varied over time. We then modeled the modern ecological niches of the two cryptic P. diadema clades and found that they were significantly diverged (p < 0.01). These ecological differences result in a very limited zone of geographic overlap for the P. diadema clades (<60 km2). Niche models also revealed that the Onive River acts as a potential barrier to dispersal between P. diadema and P. edwardsi. Further taxonomic work is required on P. diadema to determine if its taxonomic status should be revised. This first genomic evaluation of the genus resolved the relationships between the taxa and the recovered cryptic diversity within one species.


Subject(s)
Indriidae , Animals , Ecosystem , Humans , Indriidae/classification , Mitochondria , Phylogeny , Sea Urchins
SELECTION OF CITATIONS
SEARCH DETAIL