Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Nanotechnology ; 31(2): 025605, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31557732

ABSTRACT

In the present work, a fluorescent gold nanoclusters (GNCs)/superparamagnetic (Fe3O4/GNCs) nanoprobe was prepared via a facile approach for the selective detection and imaging of human leukemica cancer cells (HL-60). (γ-Mercaptopropyl)trimethoxysilane (MPS) was used as a stabilizer to prepare functionalized GNCs. The prepared GNCs@MPS was then self-assembly decorated on the surface of Fe3O4@SiO2 nanoparticles followed by poly(ethylene glycol) dimethacrylate (PGD) addition at room temperature to form Fe3O4/GNCs nanoprobe. Surface functionalization of the Fe3O4/GNCs with the thiol-modified KH1C12 aptamer was done through thiol-en click reaction between PGD and the thiol group of the aptamer. An extensive characterization of the Fe3O4/GNCs revealed strong red fluorescence (λ em = 627 nm), T 2-based contrast agent for MRI and excellent colloidal and photo stability in buffer medium. So, the aptamer-functionalized Fe3O4/GNCs nanoprobe (Fe3O4/GNCs/Aptamer) is capable to uptake and dual-image HL-60 cancer cells from a mixture. Furthermore, the MRI signal intensity of the pictures decreased linearly with an increase in the concentrations of the nanoprobe. It is also enable to detect cancer cells from a range of concentrations 10 up to 200 cells µL-1. The fluorescent/magnetic characteristics of the nanoprobe are of great significance for MRI-based and fluorescence imaging and collection of HL-60 cancer cells which implies potential help for the development of early diagnosis of highly malignant human leukemia.


Subject(s)
Aptamers, Peptide/chemistry , Cell Separation/methods , Gold/chemistry , Magnetite Nanoparticles/chemistry , Fluorescence , HL-60 Cells , Hep G2 Cells , Humans , Magnetic Resonance Imaging , Magnetite Nanoparticles/ultrastructure
2.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984014

ABSTRACT

The recognized antibacterial properties of silver nanoparticles (AgNPs) characterize them as attractive nanomaterials for developing new bioactive materials less prone to the development of antibiotic resistance. In this work, we developed new composites based on self-assembling Fmoc-Phe3 peptide hydrogels impregnated with in situ prepared AgNPs. Different methodologies, from traditional to innovative and eco-sustainable, were compared. The obtained composites were characterized from a hydrodynamic, structural, and morphological point of view, using different techniques such as DLS, SEM, and rheological measurements to evaluate how the choice of the reducing agent determines the characteristics of AgNPs and how their presence within the hydrogel affects their structure and properties. Moreover, the antibacterial properties of these composites were tested against S. aureus, a major human pathogen responsible for a wide range of clinical infections. Results demonstrated that the hydrogel composites containing AgNPs (hgel@AgNPs) could represent promising biomaterials for treating S. aureus-related infections.

3.
Materials (Basel) ; 15(17)2022 Aug 25.
Article in English | MEDLINE | ID: mdl-36079250

ABSTRACT

Peptide-based hydrogels have attracted increasing attention for biological applications and diagnostic research due to their impressive features including biocompatibility and biodegradability, injectability, mechanical stability, high water absorption capacity, and tissue-like elasticity. The aim of this review will be to present an updated report on the advancement of peptide-based hydrogels research activity in recent years in the field of anticancer drug delivery, antimicrobial and wound healing materials, 3D bioprinting and tissue engineering, and vaccines. Additionally, the biosensing applications of this key group of hydrogels will be discussed mainly focusing the attention on cancer detection.

4.
Dalton Trans ; 43(29): 11317-32, 2014 Aug 07.
Article in English | MEDLINE | ID: mdl-24922542

ABSTRACT

A new mononuclear ruthenium(ii) complex, trans-[Ru(dmb)2(Cl)(EtOH)](PF6) (dmb = 4,4'-dimethyl-2,2'-bipyridine), has been prepared and characterized by elemental analysis, spectroscopic techniques and single crystal X-ray structure determination. The complex was studied as a precatalyst for the electrocatalytic reduction of CO2 to CO in an acetonitrile solution by cyclic voltammetry (CV). The catalytic mechanism was investigated by means of quantum chemical calculations to gain deeper insight into the process of CO2 reduction. The results suggest that the reaction proceeds in six steps initiating by the two sequential 1e reductions at the dmb ligands followed by CO2 addition to give a metallocarboxylate intermediate. This intermediate undergoes further reduction and loses a CO molecule. The results reported in this paper are of great significance in providing theoretical insight into a class of electrocatalysts for reduction of CO2 to CO.

SELECTION OF CITATIONS
SEARCH DETAIL