Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Nat Immunol ; 19(12): 1319-1329, 2018 12.
Article in English | MEDLINE | ID: mdl-30397348

ABSTRACT

Many tumors evolve sophisticated strategies to evade the immune system, and these represent major obstacles for efficient antitumor immune responses. Here we explored a molecular mechanism of metabolic communication deployed by highly glycolytic tumors for immunoevasion. In contrast to colon adenocarcinomas, melanomas showed comparatively high glycolytic activity, which resulted in high acidification of the tumor microenvironment. This tumor acidosis induced Gprotein-coupled receptor-dependent expression of the transcriptional repressor ICER in tumor-associated macrophages that led to their functional polarization toward a non-inflammatory phenotype and promoted tumor growth. Collectively, our findings identify a molecular mechanism of metabolic communication between non-lymphoid tissue and the immune system that was exploited by high-glycolytic-rate tumors for evasion of the immune system.


Subject(s)
Adenocarcinoma/immunology , Macrophages/immunology , Melanoma/immunology , Tumor Escape/immunology , Tumor Microenvironment/immunology , Acidosis/immunology , Adenocarcinoma/metabolism , Animals , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Glycolysis/immunology , Humans , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic
2.
J Immunol ; 206(1): 67-76, 2021 01 01.
Article in English | MEDLINE | ID: mdl-33268486

ABSTRACT

IL-9 has lent its numerical designation to the Th9 subset of CD4+ Th cells, although it is also produced by additional cell types, including mast cells. It is a pleiotropic cytokine involved in allergic reactions, parasitic infections, autoimmune inflammation, and cancer immunity. In this article, we provide evidence that NFATc2 has contradictory functions in the expression of IL-9 in murine Th9 cells and bone marrow-derived mast cells (BMMC). The basis for this is our observation that the production of IL-9 in NFATc2-deficient Th9 cells is increased, whereas it is decreased in BMMC devoid of NFATc2. In addition, NFATc2 deficiency almost completely abrogates the expression of IL-3 in both cell types. However, selectively in BMMC, the production of IL-9 critically depends on autocrine IL-3 acting via the sustained activation of STAT5 on the expression of IL-9. Furthermore, we demonstrate that IL-3 acts independently and synergistically with IL-1ß on the production of IL-9. Taken together, we highlight NFATc2-driven production of autocrine IL-3 as a critical and cell type-specific component for IL-9 expression in BMMC.


Subject(s)
Interleukin-3/metabolism , Interleukin-9/metabolism , Mast Cells/immunology , NFATC Transcription Factors/metabolism , T-Lymphocytes, Helper-Inducer/immunology , Animals , Autocrine Communication , Cells, Cultured , Feedback, Physiological , Interleukin-9/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , NFATC Transcription Factors/genetics , STAT5 Transcription Factor/metabolism , Up-Regulation
3.
J Proteome Res ; 16(11): 4060-4072, 2017 11 03.
Article in English | MEDLINE | ID: mdl-28948796

ABSTRACT

Efficient and reproducible sample preparation is a prerequisite for any robust and sensitive quantitative bottom-up proteomics workflow. Here, we performed an independent comparison between single-pot solid-phase-enhanced sample preparation (SP3), filter-aided sample preparation (FASP), and a commercial kit based on the in-StageTip (iST) method. We assessed their performance for the processing of proteomic samples in the low µg range using varying amounts of HeLa cell lysate (1-20 µg of total protein). All three workflows showed similar performances for 20 µg of starting material. When handling sample sizes below 10 µg, the number of identified proteins and peptides as well as the quantitative reproducibility and precision drastically dropped in case of FASP. In contrast, SP3 and iST provided high proteome coverage even in the low µg range. Even when digesting 1 µg of starting material, both methods still enabled the identification of over 3000 proteins and between 25 000 and 30 000 peptides. On average, the quantitative reproducibility between experimental replicates was slightly higher in case of SP3 (R2 = 0.97 (SP3); R2 = 0.93 (iST)). Applying SP3 toward the characterization of the proteome of FACS-sorted tumor-associated macrophages in the B16 tumor model enabled the quantification of 2965 proteins and revealed a "mixed" M1/M2 phenotype.


Subject(s)
Proteomics/methods , Specimen Handling/methods , HeLa Cells , Humans , Proteomics/standards , Reproducibility of Results , Sample Size , Specimen Handling/standards , Workflow
4.
Nat Metab ; 5(7): 1174-1187, 2023 07.
Article in English | MEDLINE | ID: mdl-37414930

ABSTRACT

The gut microbiota influences intestinal barrier integrity through mechanisms that are incompletely understood. Here we show that the commensal microbiota weakens the intestinal barrier by suppressing epithelial neuropilin-1 (NRP1) and Hedgehog (Hh) signaling. Microbial colonization of germ-free mice dampens signaling of the intestinal Hh pathway through epithelial Toll-like receptor (TLR)-2, resulting in decreased epithelial NRP1 protein levels. Following activation via TLR2/TLR6, epithelial NRP1, a positive-feedback regulator of Hh signaling, is lysosomally degraded. Conversely, elevated epithelial NRP1 levels in germ-free mice are associated with a strengthened gut barrier. Functionally, intestinal epithelial cell-specific Nrp1 deficiency (Nrp1ΔIEC) results in decreased Hh pathway activity and a weakened gut barrier. In addition, Nrp1ΔIEC mice have a reduced density of capillary networks in their small intestinal villus structures. Collectively, our results reveal a role for the commensal microbiota and epithelial NRP1 signaling in the regulation of intestinal barrier function through postnatal control of Hh signaling.


Subject(s)
Hedgehog Proteins , Neuropilin-1 , Mice , Animals , Neuropilin-1/metabolism , Hedgehog Proteins/metabolism , Signal Transduction , Epithelial Cells/metabolism , Bacteria/metabolism
5.
NPJ Vaccines ; 7(1): 112, 2022 Sep 24.
Article in English | MEDLINE | ID: mdl-36153349

ABSTRACT

Transcutaneous immunization (TCI) utilizing the TLR7 agonist imiquimod (IMQ-TCI) induces T cell-driven protective immunity upon application onto intact skin. In our present work, we combine the anti-psoriatic agent dithranol with IMQ-TCI to boost vaccination efficacy (Dithranol/IMQ-based transcutaneous vaccination (DIVA)). Using ovalbumin-derived peptides as model antigens in mice, DIVA induced superior cytolytic CD8+ T cells and CD4+ T cells with a TH1 cytokine profile in the priming as well as in the memory phase. Regarding the underlying mechanisms, dithranol induced an oxidant-dependent, monocyte-attracting inflammatory milieu in the skin boosting TLR7-dependent activation of dendritic cells and macrophages leading to superior T cell priming and protective immunity in vaccinia virus infection. In conclusion, we introduce the non-invasive vaccination method DIVA to induce strong primary and memory T cell responses upon a single local treatment. This work provides relevant insights in cutaneous vaccination approaches, paving the way for clinical development in humans.

6.
ACS Nano ; 16(3): 4426-4443, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35103463

ABSTRACT

The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.


Subject(s)
Cancer Vaccines , Neoplasms , Toll-Like Receptor 7 , Toll-Like Receptor 8 , Adjuvants, Immunologic , Animals , Antigens , Immunity, Cellular , Mice , Mice, Inbred C57BL , Nanogels , Neoplasms/therapy , Ovalbumin , Toll-Like Receptor 7/agonists , Toll-Like Receptor 8/agonists
SELECTION OF CITATIONS
SEARCH DETAIL