Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Diabetologia ; 61(11): 2371-2385, 2018 11.
Article in English | MEDLINE | ID: mdl-30151615

ABSTRACT

AIMS/HYPOTHESIS: The immunomodulatory capacity of adipose tissue-derived stromal cells (ASCs) is relevant for next-generation cell therapies that aim to reverse tissue dysfunction such as that caused by diabetes. Pericyte dropout from retinal capillaries underlies diabetic retinopathy and the subsequent aberrant angiogenesis. METHODS: We investigated the pericytic function of ASCs after intravitreal injection of ASCs in mice with retinopathy of prematurity as a model for clinical diabetic retinopathy. In addition, ASCs influence their environment by paracrine signalling. For this, we assessed the immunomodulatory capacity of conditioned medium from cultured ASCs (ASC-Cme) on high glucose (HG)-stimulated bovine retinal endothelial cells (BRECs). RESULTS: ASCs augmented and stabilised retinal angiogenesis and co-localised with capillaries at a pericyte-specific position. This indicates that cultured ASCs exert juxtacrine signalling in retinal microvessels. ASC-Cme alleviated HG-induced oxidative stress and its subsequent upregulation of downstream targets in an NF-κB dependent fashion in cultured BRECs. Functionally, monocyte adhesion to the monolayers of activated BRECs was also decreased by treatment with ASC-Cme and correlated with a decline in expression of adhesion-related genes such as SELE, ICAM1 and VCAM1. CONCLUSIONS/INTERPRETATION: The ability of ASC-Cme to immunomodulate HG-challenged BRECs is related to the length of time for which ASCs were preconditioned in HG medium. Conditioned medium from ASCs that had been chronically exposed to HG medium was able to normalise the HG-challenged BRECs to normal glucose levels. In contrast, conditioned medium from ASCs that had been exposed to HG medium for a shorter time did not have this effect. Our results show that the manner of HG preconditioning of ASCs dictates their immunoregulatory properties and thus the potential outcome of treatment of diabetic retinopathy.


Subject(s)
Adipose Tissue/cytology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Glucose/pharmacology , Pericytes/cytology , Pericytes/drug effects , Stromal Cells/cytology , Animals , Cattle , Cell Adhesion/drug effects , Cell Survival/drug effects , Cells, Cultured , Diabetic Retinopathy/metabolism , E-Selectin/metabolism , Enzyme-Linked Immunosorbent Assay , Female , Humans , Intercellular Adhesion Molecule-1/metabolism , Male , Mice , Mice, Inbred C57BL , Monocytes/drug effects , Monocytes/metabolism , Oxidative Stress/drug effects , Retina/cytology , Signal Transduction/drug effects , Vascular Cell Adhesion Molecule-1/metabolism , Wound Healing/drug effects
2.
Clin Epigenetics ; 16(1): 64, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730337

ABSTRACT

BACKGROUND: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (Guilak in Best Pract Res Clin Rheumatol 25:815-823, 2011). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. RESULTS: We showed that hyper-physiological loading evokes consistent changes in CpGs associated with expression changes (ML-tCpGs) in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology (OA-tCpGs), we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. CONCLUSION: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCpGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.


Subject(s)
Cartilage, Articular , Chondrocytes , CpG Islands , DNA Methylation , Epigenesis, Genetic , Organoids , Osteoarthritis , DNA Methylation/genetics , Humans , Osteoarthritis/genetics , CpG Islands/genetics , Chondrocytes/metabolism , Organoids/metabolism , Epigenesis, Genetic/genetics , Cartilage, Articular/metabolism
4.
Res Sq ; 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-38014245

ABSTRACT

Background: Osteoarthritis (OA) is a complex, age-related multifactorial degenerative disease of diarthrodial joints marked by impaired mobility, joint stiffness, pain, and a significant decrease in quality of life. Among other risk factors, such as genetics and age, hyper-physiological mechanical cues are known to play a critical role in the onset and progression of the disease (1). It has been shown that post-mitotic cells, such as articular chondrocytes, heavily rely on methylation at CpG sites to adapt to environmental cues and maintain phenotypic plasticity. However, these long-lasting adaptations may eventually have a negative impact on cellular performance. We hypothesize that hyper-physiologic mechanical loading leads to the accumulation of altered epigenetic markers in articular chondrocytes, resulting in a loss of the tightly regulated balance of gene expression that leads to a dysregulated state characteristic of the OA disease state. Results: We showed that hyper-physiological loading evokes consistent changes in ML-tCpGs associated with expression changes in ITGA5, CAV1, and CD44, among other genes, which together act in pathways such as anatomical structure morphogenesis (GO:0009653) and response to wound healing (GO:0042060). Moreover, by comparing the ML-tCpGs and their associated pathways to tCpGs in OA pathophysiology, we observed a modest but particular interconnected overlap with notable genes such as CD44 and ITGA5. These genes could indeed represent lasting detrimental changes to the phenotypic state of chondrocytes due to mechanical perturbations that occurred earlier in life. The latter is further suggested by the association between methylation levels of ML-tCpGs mapped to CD44 and OA severity. Conclusion: Our findings confirm that hyper-physiological mechanical cues evoke changes to the methylome-wide landscape of chondrocytes, concomitant with detrimental changes in positional gene expression levels (ML-tCpGs). Since CAV1, ITGA5, and CD44 are subject to such changes and are central and overlapping with OA-tCPGs of primary chondrocytes, we propose that accumulation of hyper-physiological mechanical cues can evoke long-lasting, detrimental changes in set points of gene expression that influence the phenotypic healthy state of chondrocytes. Future studies are necessary to confirm this hypothesis.

5.
Methods Mol Biol ; 1553: 55-65, 2017.
Article in English | MEDLINE | ID: mdl-28229407

ABSTRACT

Adipose tissue-derived stem cells (ADSC) are promising candidates for therapeutic applications in cardiovascular regenerative medicine. By definition, the phenotype ADSCs, e.g., the ubiquitous secretion of growth factors, cytokines, and extracellular matrix components is not met in vivo, which renders ADSC a culture "artefact." The medium constituents therefore impact the efficacy of ADSC. Little attention has been paid to the energy source in medium, i.e., glucose, which feeds the cell's power plants: mitochondria. The role of mitochondria in stem cell biology goes beyond their function in ATP synthesis, because it includes cell signaling, reactive oxygen species (ROS) production, regulation of apoptosis, and aging. Appropriate application of ADSC for stem cells therapy of cardiovascular disease warrants knowledge of their mitochondrial phenotype and function. We discuss several methodologies for assessing ADSC mitochondrial function and structural changes under environmental cues, in particular, increased ROS caused by hyperglycemia.


Subject(s)
Adipose Tissue/cytology , Energy Metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Apoptosis , Biomarkers , Cell Differentiation , Cell Separation , Cells, Cultured , Flow Cytometry , Glucose/metabolism , Humans , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
6.
Biomaterials ; 119: 43-52, 2017 03.
Article in English | MEDLINE | ID: mdl-28006657

ABSTRACT

Encouraging advances in cell therapy research with adipose derived stem cells (ASC) require an effective short-term preservation method that provides time for quality control and transport of cells from their manufacturing facility to their clinical destination. Hypothermic storage of cells in their specific growth media offers an alternative and simple preservation method to liquid nitrogen cryopreservation or commercial preservation fluids for short-term storage and transport. However, accumulation of cell damage during hypothermia may result in cell injury and death upon rewarming through the production of excess reactive oxygen species (ROS). Here, the ability of the cell culture medium additive SUL-109, a modified 6-chromanol, to protect ASC from hypothermia and rewarming damage is examined. SUL-109 conveys protective effects against cold-induced damage in ASC as is observed by preservation of cell viability, adhesion properties and growth potential. SUL-109 does not reduce the multilineage differentiation capacity of ASC. SUL-109 conveys its protection against hypothermic damage by the preservation of the mitochondrial membrane potential through the activation of mitochondrial membrane complexes I and IV, and increases maximal oxygen consumption in FCCP uncoupled mitochondria. Consequently, SUL-109 alleviates mitochondrial ROS production and preserves ATP production. In summary, here we describe the generation of a single molecule cell preservation agent that protects ASC from hypothermic damage associated with short-term cell preservation that does not affect the differentiation capacity of ASC.


Subject(s)
Adipose Tissue/cytology , Chromans/chemistry , Cryopreservation/methods , Cryoprotective Agents/chemistry , Organ Preservation Solutions/chemistry , Stem Cells/chemistry , Stem Cells/cytology , Adipose Tissue/chemistry , Cell Culture Techniques , Cell Differentiation , Cell Survival , Cells, Cultured , Humans
7.
Stem Cells Dev ; 25(19): 1444-53, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27473785

ABSTRACT

Diabetic retinopathy (DR) is a hyperglycemia (HG)-mediated microvascular complication. In DR, the loss of pericytes and subsequently endothelial cells leads to pathologic angiogenesis in retina. Adipose-derived stromal cells (ASC) are a promising source of therapeutic cells to replace lost pericytes in DR. To date, knowledge of the influence of HG on the bioenergetics and pericytic function of ASC is negligible. Human ASC were cultured in normoglycemia medium (5 mM d-glucose) or under HG (30 mM d-glucose) and assessed. Our data showed that HG increased the level of apoptosis and reactive oxygen species production in ASC, yet their proliferation rate was not affected. HG induced alterations in mitochondrial function and morphology in ASC. HG also strongly affected the bioenergetic status of ASC in which both the maximum oxygen consumption rate and extracellular acidification rate were decreased. This was corroborated by a reduced uptake of glucose under HG. In spite of these observations, in vitro, ASC promoted the formation of vascular-like networks of human umbilical vein endothelial cells on monolayers of ASC under HG with minimally affected.


Subject(s)
Adipose Tissue/cytology , Energy Metabolism , Hyperglycemia/metabolism , Hyperglycemia/pathology , Pericytes/metabolism , Acids/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Energy Metabolism/drug effects , Extracellular Space/metabolism , Glucose/toxicity , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Membrane Potential, Mitochondrial/drug effects , Neovascularization, Physiologic/drug effects , Oxygen Consumption/drug effects , Pericytes/drug effects , Phenotype , Reactive Oxygen Species/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL