Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Cancer Immunol Immunother ; 72(3): 733-742, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36194288

ABSTRACT

BACKGROUND: The role of tumor-associated macrophages (TAMs) in glioblastoma (GBM) disease progression has received increasing attention. Recent advances have shown that TAMs can be re-programmed to exert a pro-inflammatory, anti-tumor effect to control GBMs. However, imaging methods capable of differentiating tumor progression from immunotherapy treatment effects have been lacking, making timely assessment of treatment response difficult. We showed that tracking monocytes using iron oxide nanoparticle (USPIO) with MRI can be a sensitive imaging method to detect therapy response directed at the innate immune system. METHODS: We implanted syngeneic mouse glioma stem cells into C57/BL6 mice and treated the animals with either niacin (a stimulator of innate immunity) or vehicle. Animals were imaged using an anatomical MRI sequence, R2* mapping, and quantitative susceptibility mapping (QSM) before and after USPIO injection. RESULTS: Compared to vehicles, niacin-treated animals showed significantly higher susceptibility and R2*, representing USPIO and monocyte infiltration into the tumor. We observed a significant reduction in tumor size in the niacin-treated group 7 days later. We validated our MRI results with flow cytometry and immunofluoresence, which showed that niacin decreased pro-inflammatory Ly6C high monocytes in the blood but increased CD16/32 pro-inflammatory macrophages within the tumor, consistent with migration of these pro-inflammatory innate immune cells from the blood to the tumor. CONCLUSION: MRI with USPIO injection can detect therapeutic responses of innate immune stimulating agents before changes in tumor size have occurred, providing a potential complementary imaging technique to monitor cancer immunotherapies. MANUSCRIPT HIGHLIGHT: We show that iron oxide nanoparticles (USPIOs) can be used to label innate immune cells and detect the trafficking of pro-inflammatory monocytes into the glioblastoma. This preceded changes in tumor size, making it a more sensitive imaging technique.


Subject(s)
Glioblastoma , Glioma , Niacin , Mice , Animals , Monocytes/pathology , Glioma/pathology , Models, Animal , Magnetic Resonance Imaging/methods
2.
Front Neurol ; 11: 307, 2020.
Article in English | MEDLINE | ID: mdl-32411081

ABSTRACT

Mild traumatic brain injury (mTBI) is a debilitating but extremely common form of brain injury that affects a substantial number of people each year. mTBI is especially common in children and adolescents. Our understanding of mTBI pathophysiology is limited, and there is currently no accepted marker for disease severity. A potential marker for disease severity may be cerebrovascular dysfunction. Recent findings have implicated cerebrovascular alteration as an important component of mTBI and suggest it contributes to the development of persistent, long-term symptoms. In this paper, we conducted two studies to investigate whether mTBI affects venous drainage patterns in the central nervous system using alterations in the size of venous sinuses as a marker of changes in drainage. Using a closed head vertical weight-drop model and a lateral impact injury model of mTBI, we imaged and quantified the size of three major draining vessels in the adolescent rat brain using 9.4T MRI. Areas and volumes were quantified in the superior sagittal sinus and left and right transverse sinuses using images acquired from T2w MRI in one study and post-gadolinium T1w MRI in another. Our results indicated that the three venous sinuses were significantly larger in mTBI rats as compared to sham rats 1-day post injury but recovered to normal size 2 weeks after. Acutely enlarged sinuses post-mTBI may indicate abnormal venous drainage, and this could be suggestive of a cerebrovascular response to trauma.

3.
Sci Rep ; 9(1): 8488, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186441

ABSTRACT

Atrophy has become a clinically relevant marker of progressive neurodegeneration in multiple sclerosis (MS). To better understand atrophy, mouse models that feature atrophy along with other aspects of MS are needed. The experimental autoimmune encephalomyelitis (EAE) mouse model of MS was used to determine the extent of atrophy in a model of inflammation-associated central nervous system pathology. High-resolution magnetic resonance imaging (MRI) and atlas-based volumetric analysis were performed to measure brain regional volumes in EAE mice. EAE brains were larger at peak clinical disease (days 14-16) compared to controls, with affected regions including the cerebellum, hippocampus, and corpus callosum. Following peak clinical disease, EAE mice exhibited significant loss of volume at chronic long-term disease duration (day 66+). Atrophy was identified in both white and grey matter regions including the cerebral cortex, cerebellum, hippocampus, corpus callosum, basal forebrain, midbrain, optic tract, and colliculus. Histological analysis of the atrophied cortex, cerebellum, and hippocampus showed demyelination, and axonal/neuronal loss. We hypothesize this atrophy could be a result of inflammatory associated neurodegenerative processes, which may also be involved in MS. Using MRI and atlas-based volumetrics, EAE has the potential to be a test bed for treatments aimed at reducing progressive neurological deterioration in MS.


Subject(s)
Autoimmunity , Central Nervous System/immunology , Central Nervous System/pathology , Encephalomyelitis, Autoimmune, Experimental/diagnostic imaging , Encephalomyelitis, Autoimmune, Experimental/immunology , Magnetic Resonance Imaging , Multiple Sclerosis/pathology , Animals , Atrophy , Axons/pathology , Behavior, Animal , Brain/immunology , Brain/pathology , Disease Models, Animal , Disease Progression , Encephalomyelitis, Autoimmune, Experimental/pathology , Female , Mice, Inbred C57BL , Myelin Sheath/pathology , Nerve Degeneration/pathology , Organ Size , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL