Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters

Database
Language
Publication year range
1.
Sensors (Basel) ; 23(14)2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37514935

ABSTRACT

Photoacoustic imaging has emerged as a promising biomedical imaging technique that enables visualization of the optical absorption characteristics of biological tissues in vivo. Among the different photoacoustic imaging system configurations, optical-resolution photoacoustic microscopy stands out by providing high spatial resolution using a tightly focused laser beam, which is typically transmitted through optical fibers. Achieving high-quality images depends significantly on optical fluence, which is directly proportional to the signal-to-noise ratio. Hence, optimizing the laser-fiber coupling is critical. Conventional coupling systems require manual adjustment of the optical path to direct the laser beam into the fiber, which is a repetitive and time-consuming process. In this study, we propose an automated laser-fiber coupling module that optimizes laser delivery and minimizes the need for manual intervention. By incorporating a motor-mounted mirror holder and proportional derivative control, we successfully achieved efficient and robust laser delivery. The performance of the proposed system was evaluated using a leaf-skeleton phantom in vitro and a human finger in vivo, resulting in high-quality photoacoustic images. This innovation has the potential to significantly enhance the quality and efficiency of optical-resolution photoacoustic microscopy.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36839061

ABSTRACT

Photoacoustic agents are widely used in various theranostic applications. By evaluating the biodistribution obtained from photoacoustic images, the effectiveness of theranostic agents in terms of their delivery efficiency and treatment responses can be analyzed. Through this study, we evaluate and summarize the recent advances in photoacoustic-guided phototherapy, particularly in photothermal and photodynamic therapy. This overview can guide the future directions for theranostic development. Because of the recent applications of photoacoustic imaging in clinical trials, theranostic agents with photoacoustic monitoring have the potential to be translated into the clinical world.

3.
Metabolites ; 12(5)2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35629886

ABSTRACT

In recent decades, photoacoustic imaging has been used widely in biomedical research, providing molecular and functional information from biological tissues in vivo. In addition to being used for research in small animals, photoacoustic imaging has also been utilized for in vivo human studies, achieving a multispectral photoacoustic response in deep tissue. There have been several clinical trials for screening cancer patients by analyzing multispectral responses, which in turn provide metabolomic information about the underlying biological tissues. This review summarizes the methods and results of clinical photoacoustic trials available in the literature to date to classify cancerous tissues, specifically of the thyroid and breast. From the review, we can conclude that a great potential exists for photoacoustic imaging to be used as a complementary modality to improve diagnostic accuracy for suspicious tumors, thus significantly benefitting patients' healthcare.

4.
Exp Biol Med (Maywood) ; 247(7): 551-560, 2022 04.
Article in English | MEDLINE | ID: mdl-35068228

ABSTRACT

Photoacoustic imaging has drawn a significant amount of attention due to its unique capacity for functional, metabolic, and molecular imaging, which is achieved by the combination of optical excitation and acoustic detection. With both strengths of light and ultrasound, photoacoustic images can provide strong optical contrast at high ultrasound resolution in deep tissue. As photoacoustic imaging can be used to visualize complementary information to ultrasound imaging using the same data acquisition process, several studies have been conducted on combining photoacoustic imaging with existing clinical ultrasound systems. This review highlights our development of a photoacoustic/ultrasound dual-modal imaging system, various features and functionalities implemented for clinical translation, and preclinical/clinical studies performed by using the systems.


Subject(s)
Photoacoustic Techniques , Photoacoustic Techniques/methods , Ultrasonography/methods
5.
Biosensors (Basel) ; 12(8)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36004990

ABSTRACT

Photoacoustic imaging using endogenous chromophores as a contrast has been widely applied in biomedical studies owing to its functional imaging capability at the molecular level. Various exogenous contrast agents have also been investigated for use in contrast-enhanced imaging and functional analyses. This review focuses on contrast agents, particularly in the wavelength range, for use in photoacoustic imaging. The basic principles of photoacoustic imaging regarding light absorption and acoustic release are introduced, and the optical characteristics of tissues are summarized according to the wavelength region. Various types of contrast agents, including organic dyes, semiconducting polymeric nanoparticles, gold nanoparticles, and other inorganic nanoparticles, are explored in terms of their light absorption range in the near-infrared region. An overview of the contrast-enhancing capacity and other functional characteristics of each agent is provided to help researchers gain insights into the development of contrast agents in photoacoustic imaging.


Subject(s)
Metal Nanoparticles , Nanoparticles , Photoacoustic Techniques , Contrast Media , Gold , Photoacoustic Techniques/methods , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL