Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
J Org Chem ; 88(22): 15647-15657, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37910657

ABSTRACT

Design of conformationally stable compounds with planar chirality is a topic of great interest mainly because of their potential applications as enantioselective ligands or other functional materials. Herein, we present the design and synthesis of novel planar chiral cyclophanes, obtained by ortho, ortho″ anchoring of the p,p'-terphenyl unit, with bridges of different lengths and rigidities, along with their nuclear magnetic resonance, mass spectrometry, and X-ray characterizations. We investigated the influence of the structural particularities of the bridges over the stability of the enantiomers, by means of nuclear magnetic resonance and chiral high-performance liquid chromatography as well as by density functional theory calculations. We also demonstrated the ability of one of the cyclophanes to preferentially bind arginine with Ka > 110 M-1 (ΔG > -11 kJ mol-1) in acetonitrile solutions containig 10 % water, in the presence of other amino acids.

2.
Int J Mol Sci ; 24(24)2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38139304

ABSTRACT

Thiadiazole derivatives have garnered significant attention in the field of medicinal chemistry due to their diverse pharmacological activities, including anticancer properties. This article presents the synthesis of a series of thiadiazole derivatives and investigates their chemical characterization and potential anticancer effects on various cell lines. The results of the nuclear magnetic resonance (NMR) analyses confirmed the successful formation of the target compounds. The anticancer potential was evaluated through in silico and in vitro cell-based assays using LoVo and MCF-7 cancer lines. The assays included cell viability, proliferation, apoptosis, and cell cycle analysis to assess the compounds' effects on cancer cell growth and survival. Daphnia magna was used as an invertebrate model for the toxicity evaluation of the compounds. The results revealed promising anticancer activity for several of the synthesized derivatives, suggesting their potential as lead compounds for further drug development. The novel compound 2g, 5-[2-(benzenesulfonylmethyl)phenyl]-1,3,4-thiadiazol-2-amine, demonstrated good anti-proliferative effects, exhibiting an IC50 value of 2.44 µM against LoVo and 23.29 µM against MCF-7 after a 48-h incubation and little toxic effects in the Daphnia test.


Subject(s)
Antineoplastic Agents , Thiadiazoles , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/chemistry , Thiadiazoles/chemistry , Cell Proliferation , Drug Screening Assays, Antitumor , Cell Line, Tumor
3.
Molecules ; 28(16)2023 Aug 20.
Article in English | MEDLINE | ID: mdl-37630398

ABSTRACT

Five new derivatives were obtained utilizing 4-chloro-7-nitrobenzofurazan (NBD-chloride) in combination with furfurylamine, adamantylamine, aminohippuric acid, phenylalanine, and dehydroabietylamine. These derivatives were then subjected to a comparative analysis of their physical, chemical, and certain biological properties alongside two analogous and known compounds derived from the glycine and 4-amino-TEMPO free radical.

4.
Molecules ; 27(9)2022 Apr 23.
Article in English | MEDLINE | ID: mdl-35566083

ABSTRACT

The efficient regioselective bromination and iodination of the nonsteroidal anti-inflammatory drug (NSAID) carprofen were achieved by using bromine and iodine monochloride in glacial acetic acid. The novel halogenated carprofen derivatives were functionalized at the carboxylic group by esterification. The regioselectivity of the halogenation reaction was evidenced by NMR spectroscopy and confirmed by X-ray analysis. The compounds were screened for their in vitro antibacterial activity against planktonic cells and also for their anti-biofilm effect, using Gram-positive bacteria (Staphylococcus aureus ATCC 29213, Enterococcus faecalis ATCC 29212) and Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853). The cytotoxic activity of the novel compounds was tested against HeLa cells. The pharmacokinetic and pharmacodynamic profiles of carprofen derivatives, as well as their toxicity, were established by in silico analyses.


Subject(s)
Gram-Negative Bacteria , Gram-Positive Bacteria , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Carbazoles , Escherichia coli , HeLa Cells , Humans , Microbial Sensitivity Tests
5.
J Dairy Sci ; 104(8): 8454-8466, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33934861

ABSTRACT

This paper investigated the limits of the current approach for the determination of the fatty acids profile of milk fats from proton nuclear magnetic resonance data based on the hypothesis that the signal at 0.96 ppm, currently assigned in the literature as a marker for the "short chain fatty acids," is generated only by the butyric moiety (not by all of the short-chain fatty acids, which also include C6:0-caproic acid). The hypothesis was tested and experimentally confirmed. Moreover, the triplet at 0.96 ppm can also be due to n-3 fatty acids such as linolenic acid (C18:3); therefore, a previously reported methodology for the fatty acids profiling of dairy products-considered as general in the literature-cannot be used in fraud-detection approaches because it allows linolenic acid to be mistaken for butyric acid, consequently leading to misclassification of adulterated samples as nonadulterated. To support our opinion, we have applied the current literature approach for the determination of the fatty acids composition of 3 synthetic nondairy fat blends and have obtained fatty acid compositions similar to milk fats, allowing for their misclassification as genuine milk fats. However, in reality, the blends had very different compositions, as confirmed by gas chromatography. Consequently, we have highlighted the weaknesses of the existing methodology for the detection of dairy food adulteration. In return, new proton nuclear magnetic resonance descriptors based on various integral ratios of signals associated with CH2 moiety versus signals associated with butyric and n-3 fatty acids were proposed to detect adulterations.


Subject(s)
Milk , Protons , Animals , Fatty Acids , Fraud , Magnetic Resonance Spectroscopy
6.
Int J Mol Sci ; 22(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202639

ABSTRACT

ß-Ketophosphonates with pentalenofurane fragments linked to the keto group were synthesized. The bulky pentalenofurane skeleton is expected to introduce more hindrance in the prostaglandin analogues of type III, greater than that obtained with the bicyclo[3.3.0]oct(a)ene fragments of prostaglandin analogues I and II, to slow down (retard) the inactivation of the prostaglandin analogues by oxidation of 15α-OH to the 15-keto group via the 15-PGDH pathway. Their synthesis was performed by a sequence of three high yield reactions, starting from the pentalenofurane alcohols 2, oxidation of alcohols to acids 3, esterification of acids 3 to methyl esters 4 and reaction of the esters 4 with lithium salt of dimethyl methanephosphonate at low temperature. The secondary compounds 6b and 6c were formed in small amounts in the oxidation reactions of 2b and 2c, and the NMR spectroscopy showed that their structure is that of an ester of the acid with the starting alcohol. Their molecular structures were confirmed by single crystal X-ray determination method for 6c and XRPD powder method for 6b.


Subject(s)
Ketones/chemistry , Organophosphonates/chemistry , Prostaglandins, Synthetic/chemical synthesis , Chemistry Techniques, Synthetic , Crystallography, X-Ray , Models, Molecular , Molecular Conformation , Molecular Structure , Prostaglandins, Synthetic/chemistry , Sesquiterpenes/chemistry
7.
Sensors (Basel) ; 20(23)2020 Nov 28.
Article in English | MEDLINE | ID: mdl-33260790

ABSTRACT

A new thiosemicarbazone ligand was immobilized through a Cu(I)-catalyzed click reaction on the surface of glassy carbon (GC) and electrochemically reduced graphene oxide (GC-ERGO) electrodes grafted with phenylethynyl groups. Using the accumulation at open circuit followed by anodic stripping voltammetry, the modified electrodes showed a significant selectivity and sensibility for Hg(II) ions. A detection limit of 7 nM was achieved with the GC modified electrodes. Remarkably, GC-ERGO modified electrodes showed a significantly improved detection limit (0.8 nM), sensitivity, and linear range, which we attribute to an increased number of surface binding sites and better electron transfer properties. Both GC and GC-ERGO modified electrodes proved their applicability for the analysis of real water samples.

8.
Molecules ; 25(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114355

ABSTRACT

This paper presents an enzyme biocatalytic method for grafting lignin (grafting bioprocess) with aniline, leading to an amino-derivatized polymeric product with modified properties (e.g., conductivity, acidity/basicity, thermostability and amino-functionalization). Peroxidase enzyme was used as a biocatalyst and H2O2 was used as an oxidation reagent, while the oxidative insertion of aniline into the lignin structure followed a radical mechanism specific for the peroxidase enzyme. The grafting bioprocess was tested in different configurations by varying the source of peroxidase, enzyme concentration and type of lignin. Its performance was evaluated in terms of aniline conversion calculated based on UV-vis analysis. The insertion of amine groups was checked by 1H-NMR technique, where NH protons were detected in the range of 5.01-4.99 ppm. The FTIR spectra, collected before and after the grafting bioprocess, gave evidence for the lignin modification. Finally, the abundance of grafted amine groups was correlated with the decrease of the free -OH groups (from 0.030 to 0.009 -OH groups/L for initial and grafted lignin, respectively). Additionally, the grafted lignin was characterized using conductivity measurements, gel permeation chromatography (GPC), thermogravimetric analysis (TGA), temperature-programmed desorption (TPD-NH3/CO2) and scanning electron microscopy (SEM) analyses. The investigated properties of the developed lignopolymer demonstrated its disposability for specific industrial applications of derivatized lignin.


Subject(s)
Aniline Compounds/chemistry , Lignin/chemistry , Peroxidases/metabolism , Alcohols/chemistry , Biocatalysis , Electric Conductivity , Hydrocarbons, Aromatic/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Molecular Weight , Oxidation-Reduction , Temperature
9.
Molecules ; 25(14)2020 Jul 21.
Article in English | MEDLINE | ID: mdl-32708236

ABSTRACT

Starting from isoniazid and carboxylic acids as precursors, thirteen new hydrazides and 1,3,4-oxadiazoles of 2-(4-substituted-phenoxymethyl)-benzoic acids were synthesized and characterized by appropriate means. Their biological properties were evaluated in terms of apoptosis, cell cycle blocking, and drug metabolism gene expression on HCT-8 and HT-29 cell lines. In vitro antimicrobial tests were performed by the microplate Alamar Blue assay for the anti-mycobacterial activities and an adapted agar disk diffusion technique for other non-tubercular bacterial strains. The best antibacterial activity (anti-Mycobacterium tuberculosis effects) was proved by 9. Compounds 7, 8, and 9 determined blocking of G1 phase. Compound 7 proved to be toxic, inducing apoptosis in 54% of cells after 72 h, an effect that can be predicted by the increased expression of mRNA caspases 3 and 7 after 24 h. The influence of compounds on gene expression of enzymes implicated in drug metabolism indicates that synthesized compounds could be metabolized via other pathways than NAT2, spanning adverse effects of isoniazid. Compound 9 had the best antibacterial activity, being used as a disinfectant agent. Compounds 7, 8, and 9, seemed to have antitumor potential. Further studies on the action mechanism of these compounds on the cell cycle may bring new information regarding their biological activity.


Subject(s)
Anti-Infective Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antitubercular Agents/chemistry , Hydrazines/chemical synthesis , Oxadiazoles/chemical synthesis , Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Antitubercular Agents/pharmacology , Arylamine N-Acetyltransferase/metabolism , Benzoates/chemistry , Carboxylic Acids/chemistry , Drug Evaluation, Preclinical , G1 Phase/drug effects , Gene Expression Regulation/drug effects , Humans , Hydrazines/pharmacology , Isoniazid/chemistry , Isoniazid/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , RNA, Messenger/drug effects
10.
Bioorg Chem ; 92: 103295, 2019 11.
Article in English | MEDLINE | ID: mdl-31546206

ABSTRACT

In this study we describe the synthesis and characterisation of a new hydrazone-based fluorescent compound that is able to selectively label the endoplasmic reticulum (ER) in yeast and mammalian living cells. The fluorescence properties of the compound depended on the DMSO/water ratio and on the pH. NMR experiments allowed determination of the conformation adopted in various environments. Apart from the convenient synthetic procedure, our compound displays low cell toxicity and blue emission compatible with filters routinely used in fluorescence microscopy.


Subject(s)
Fluorescent Dyes/chemistry , Hydrazones/chemistry , Saccharomyces cerevisiae/cytology , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Endoplasmic Reticulum/chemistry , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/pharmacology , HeLa Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/pharmacology , Microscopy, Fluorescence , Molecular Structure , Saccharomyces cerevisiae/chemistry , Structure-Activity Relationship
11.
Molecules ; 24(13)2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31277334

ABSTRACT

New 1'-homocarbanucleoside analogs with an optically active substituted bicyclo[2.2.1]heptane skeleton as sugar moiety were synthesized. The pyrimidine analogs with uracil, 5-fluorouracil, thymine and cytosine and key intermediate with 6-chloropurine (5) as nucleobases were synthesized by a selective Mitsunobu reaction on the primary hydroxymethyl group in the presence of 5-endo-hydroxyl group. Adenine and 6-substituted adenine homonucleosides were obtained by the substitution of the 6-chlorine atom of the key intermediate 5 with ammonia and selected amines, and 6-methoxy- and 6-ethoxy substituted purine homonucleosides by reaction with the corresponding alkoxides. No derivatives appeared active against entero, yellow fever, chikungunya, and adeno type 1viruses. Two compounds (6j and 6d) had lower IC50 (15 ± 2 and 21 ± 4 µM) and compound 6f had an identical value of IC50 (28 ± 4 µM) to that of acyclovir, suggesting that the bicyclo[2.2.1]heptane skeleton could be further studied to find a candidate for sugar moiety of the nucleosides.


Subject(s)
Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Glycosides/chemistry , Heptanes/chemistry , Nucleosides/chemistry , Nucleosides/pharmacology , Drug Design , Humans , Ligands , Microbial Sensitivity Tests , Molecular Conformation , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Nucleosides/analogs & derivatives , Purines/chemistry , Spectrum Analysis , Structure-Activity Relationship , Sugars/chemistry
12.
Faraday Discuss ; 209(0): 67-82, 2018 09 28.
Article in English | MEDLINE | ID: mdl-29989626

ABSTRACT

Water uptake in vesicles and the subsequent exchange between water protons and amide -NH protons in amino acids can be followed by a new, highly sensitive, type of magnetic resonance spectroscopy: dynamic nuclear polarisation (DNP)-enhanced NMR in the liquid state. Water hydrogen atoms are detected prior to and after their transfer to molecular sites in peptides and proteins featuring highly-accessible proton-exchangeable groups, as is the case for the -NH groups of intrinsically disordered proteins. The detected rates for amide proton-water proton exchange can be modulated by membrane-crossing rates, when a membrane channel is interposed. We hyperpolarised water proton spins via dynamic nuclear polarisation followed by sample dissolution (d-DNP) and transferred the created polarisation to -NH groups with high solvent accessibility in an intrinsically disordered protein domain. This domain is the membrane anchor of c-Src kinase, whose activity controls cell proliferation. The hindrance of effective water proton transfer rate constants observed in free solvent when a membrane-crossing step is involved is discussed. This study aims to assess the feasibility of recently-introduced hyperpolarised (DNP-enhanced) NMR to assess water membrane crossing dynamics.


Subject(s)
Ion Channels/chemistry , Peptides/chemistry , Proteins/chemistry , Protons , Water/chemistry , Magnetic Resonance Spectroscopy
13.
Bioorg Med Chem ; 23(3): 401-10, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25557899

ABSTRACT

A series of several new isoniazid derivatives, isonicotinic acid 2-(2-hydroxy-8-substituted-tricyclo[7.3.1.0(2.7)]tridec-13-ylidene)-hydrazides, were synthesized and fully characterized. These new isoniazid derivatives were studied regarding their antibacterial activity and cytotoxicity, as well as their influences on some metabolizing enzymes. The best anti-mycobacterial activity was observed in the case of compounds containing alkyl side chains in the 8 position of tricyclo[7.3.1.0(2.7)]tridec-13-ylidene group. On contrary, the antimicrobial activity of these new compounds against various non-tuberculosis strains showed the best activity to be with the phenyl side chain of compound 6. It proved also to be the most toxic, inducing apoptosis and blocking the cell cycle in G0/G1 phase. The cell cycle was blocked in G0/G1 phase also by compound 3, but this compound did not show any toxicity. All compounds induced the expression of NAT1 and NAT2 genes in HT-29 cell line, and the expression of CYP1A1 in HT-29 and HCT-8 cell lines. The expression level of CYP3A4 was increased by compounds 1, 6 and 7 in HCT-8 cells. These results indicated that the activation of other metabolizing pathways, apart from those of isoniazid, take place. It might also point out the possibility of an increased isoniazid acetylation ratio by co-administration with new compounds in slow acetylators.


Subject(s)
Isoniazid/analogs & derivatives , Isoniazid/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Antioxidants/pharmacology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Progression , HT29 Cells , Humans , Isoniazid/chemical synthesis
14.
Chirality ; 27(11): 826-34, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26364568

ABSTRACT

A convenient enantioselective approach for the pinacol coupling of 1-acetylazulene involving easily accessible (R)- or (S)-BINOLs as chiral additive is reported. This supposes the preformation of the chiral titanium-BINOL complex in 1:2 ratio and subsequent reduction with zinc when, 2,3-di(azulen-1-yl)butane-2,3-diol can be isolated in around 60% enantiomeric excess. The absolute configuration of the isolated enantiomers was assigned by comparison of the experimental and Boltzmann-weighted calculated VCD and ECD spectra and assigned as (+)-(2S;3S)-di(azulen-1-yl)butane-2,3-diol. Chirality 27:826-834, 2015. © 2015 Wiley Periodicals, Inc.

15.
Chempluschem ; 89(2): e202300504, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37882979

ABSTRACT

This work reports the design and synthesis of novel oxadiazole-decorated azobenzenes, structural analysis of the resulting compounds and behavior under light irradiation. The synthetic strategy involved constructing amino functionalized heterocyclic key intermediates which were used either to yield electrophilic diazonium salts able to react with phenol moieties or as nucleophilic partners in Bayer-Mills reaction with nitroso-substituted derivatives. The amino-derived oxadiazole intermediates were investigated by absorption and emission spectroscopy providing blue and green emitted light. The target oxadiazole-decorated azobenzenes were structurally characterized, including solid-state structures, and subsequently used in irradiation experiments in order to take advantage of the azo group known to provide photoswitching abilities. We noticed quenching of the emissive properties in presence of the azo group; however, all compounds were very stable to repeated cycles of light irradiation. In addition, according to structural diversification we could obtain half-lives of the meta stable isomers within hours to hundreds of hours range. The experimental results were very well correlated with DFT calculations.

16.
J Phys Chem Lett ; 14(18): 4247-4251, 2023 May 11.
Article in English | MEDLINE | ID: mdl-37126581

ABSTRACT

Imaging the molecular kinetics of antioxidants by magnetic resonance can contribute to the mechanistic understanding of therapeutic approaches. Magnetic resonance detection of the response to flashes of oxidative stress requires sequential spectroscopy on the same time scale on which reactive oxygen species are generated. To this effect, we propose a single-polarization multiple-detection stroboscopic experiment. We demonstrate this experiment for the follow-up of glutathione oxidation kinetics. On-the-fly stroboscopic detection minimizes the durations necessary for single acquisitions yet necessitates sustaining of magnetization lifetimes. Long-lived proton spin states (LLS) in the cysteine and glycine residues of glutathione with TLLS up to 16 s are reached. Based on 1H LLS, we followed fast oxidation kinetics in the glutathione redox pair GSH/GSSG. This new detection method allows sampling of long-lived spin order multiple times via small flip-angle excitations. This establishes the ground for the follow-up of redox processes detecting GSH/GSSG kinetics as magnetic-resonance biomarker of FLASH oxidative processes on time scales of tens of seconds.

17.
Antioxidants (Basel) ; 12(3)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36978960

ABSTRACT

4-Aminodiphenylamino derivatives were investigated for their antioxidant and hydrophobicity character, together with other biological measurements, such as antimicrobial and antibiofilm activity. Among these nine compounds used, we obtained novel derivatives via reaction of the starting material with NBD-chloride. Therefore, we performed a full structural analysis for these compounds, i.e., elemental analysis, IR, UV-Vis, 1H- and 13C-NMR, ESI-MS, X-ray diffraction on single crystal, etc. The hydrophobicity of all the compounds was measured either experimentally using the RP-TLC technique, or via calculation using the fragments method. The other structural characteristics were analyzed, and a correlation between the experimental and computed properties was found. Moreover, the results of the biological evaluation showed that some of the synthesized compounds have antimicrobial and antibiofilm activity.

18.
Int J Biol Macromol ; 253(Pt 7): 127445, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37839599

ABSTRACT

This is the first report on an efficient, "environmentally friendly" chemical reduction method for the synthesis of aminated hyaluronic acid-based silver nanoparticles on the modified surface of titanium dioxide nanoparticles aimed for biological applications. Silver nanoparticles exhibit well-known physical-chemical and optical properties appropriate for different biological applications. Modifying the nanoparticles leads to a change in their expected bioactivity. This represents an important topic for the current research. We have developed a novel aminated hyaluronic acid (HA-EDA)-based protocol to obtain silver nanoparticles, in which HA-EDA was used for the first time as a reducing and stabilizing agent. The effect of the size of silver nanoparticles on the titanium dioxide surface and the chemical composition of the obtained materials were investigated by TEM, XRD, XPS, ATR-FTIR, Raman spectroscopy, NMR and H2-TPR analyses. The antioxidant, in vitro biocompatibility, and antimicrobial activity of the fabricated composites have been evaluated. The results prove that the prepared materials exhibit antimicrobial, antioxidant, and anti-inflammatory activity, thus providing protection against infection and supporting tissue regeneration, these two key effects being of paramount importance for promoting wound healing.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Metal Nanoparticles/chemistry , Hyaluronic Acid/chemistry , Silver/pharmacology , Silver/chemistry , Antioxidants , Anti-Bacterial Agents/chemistry
19.
Dalton Trans ; 52(35): 12282-12295, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37574873

ABSTRACT

Two families of homo- and heterometallic complexes, [Zn2L1(µ-OH)(H2O)2](ClO4)2, [Zn2L2(µ-OH)(H2O)2](ClO4)2, [Zn2L3(µ-OH)(H2O)2](ClO4)2, 1∞[{L1Zn2(µ-OH)}{µ-[Ag(CN)2]}](ClO4), [{L1Zn2(µ-OH)}2{µ-[Au(CN)2]}{[Au(CN)2]2}](ClO4)·H2O, 1∞[{L2Zn2(µ3-OH)}2(H2O){µ-[Ag(CN)2]}](ClO4)3·THF·0.5MeOH, 1∞[{L2Zn2(µ3-OH)}2(H2O){µ-[Au(CN)2]}](ClO4)3·THF·H2O, and 1∞[{L3Zn2(µ-OH)}{µ-[Ag(CN)2]}][Ag(CN)2]·H2O, respectively, have been synthesized and characterized. The Schiff bases used as ligands were obtained by condensation reactions of 2,6-diformyl-p-cresol with N,N-dimethyl-ethylenediamine (HL1), 2-aminomethyl-pyridine (HL2), and 2-aminoethyl-pyridine (HL3), respectively. The cytotoxic/cytostatic and genotoxic effects in cultured human MCF-7 (luminal type A breast cancer), MDA-MB-231 (triple negative breast cancer), HeLa (cervical carcinoma), and Lep-3 (non-tumor embryonal fibroblastoid cells) were studied. The investigations were performed by thiazolyl blue tetrazolium bromide test (MTT test), neutral red uptake cytotoxicity assay, crystal violet staining, hematoxylin and eosin staining, double staining with acridine orange and propidium iodide, AnnexinV/FITC, and Comet assay in short-term experiments (24-72 h, with monolayer cell cultures) as well as by 3D colony-forming method in long-term experiments (28 days, with 3D cancer cell colonies). The results obtained revealed that: (i) applied at a concentration range of 0.1-100 µg mL-1, the compounds investigated decrease in a time- and concentration-dependent manner the viability and/or proliferation of the treated cells; (ii) complexes of {Zn(II)Au(I)} show relatively higher cytotoxic/genotoxic activity and antitumor potential as compared to {Zn(II)Ag(I)}; (iii) some of the complexes demonstrate more pronounced cytotoxic potential than commercially available antitumor agents cisplatin, oxaliplatin, and epirubicin.


Subject(s)
Antineoplastic Agents , Triple Negative Breast Neoplasms , Humans , Schiff Bases/pharmacology , Schiff Bases/chemistry , Ligands , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Zinc/pharmacology , Zinc/chemistry , Pyridines
20.
Materials (Basel) ; 15(5)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35268860

ABSTRACT

Azulene-containing chalcones have been synthesized via Claisen-Schmidt condensation reaction. Their chemical structure has been established by spectroscopic methods where the 1H-NMR spectra suggested that the title chalcones were geometrically pure and configured trans (J = 15 Hz). The influence of functional groups from azulene-containing chalcones on the biological activity of the 2-propen-1-one unit was investigated for the first time. This study presents optical and fluorescent investigations, QSAR studies, and biological activity of 10 novel compounds. These chalcones were evaluated for their antimicrobial activity against Gram-positive and Gram-negative bacteria. The results revealed that most of the synthesized compounds showed inhibition against Gram-negative microorganisms, independent of the substitution of azulene scaffold. Instead, all azulene-containing chalcones exhibited good antifungal activity against Candida parapsilosis, with MIC values ranging between 0.156 and 0.312 mg/mL. The most active compound was chalcone containing azulene moieties on both sides of the 2-propene-1-one bond, exhibiting good activity against both bacteria-type strains and good antifungal activity. This antifungal activity combined with low toxicity makes azulene-containing chalcones a new class of bioorganic compounds.

SELECTION OF CITATIONS
SEARCH DETAIL