Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Publication year range
1.
Mol Hum Reprod ; 29(11)2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37935442

ABSTRACT

Autophagy is a well-conserved metabolic system that maintains homeostasis by relying on lysosomal breakdown. The endometrium of patients with intrauterine adhesion (IUA) and an animal model exhibits impaired autophagy. Autophagy is negatively correlated with inflammation. Activation of autophagy can inhibit the inflammatory response, while defects in autophagy will activate the inflammatory response. Here, we studied whether electroacupuncture (EA) inhibits inflammation and promotes endometrial injury repair by activating endometrial autophagy. The IUA animal model was established by mechanical injury plus lipopolysaccharide infection. EA stimulation was applied to the acupoints Guanyuan (CV4), bilateral Sanyinjiao (SP6), and Zusanli (ST36). The results indicated that EA could improve endometrial morphology, attenuate endometrial fibers, and enhance endometrial receptivity in the rat. EA could increase the autophagosomes of endometrial epithelial cells, increase the levels of LC3 and Beclin1, and decrease the level of p62. Additionally, EA may also suppress the nuclear factor kappa-B (NF-κB) signaling pathway and reduce the release of inflammatory factors. Additionally, the effect of EA was comparable to that of the autophagy agonist rapamycin, and the autophagy inhibitor 3-methyladenine reversed the therapeutic effect of EA. Therefore, we assume that EA may facilitate endometrial healing by activating autophagy and reducing NF-κB signal pathway-mediated inflammation.


Subject(s)
Electroacupuncture , Uterine Diseases , Humans , Female , Rats , Animals , NF-kappa B/metabolism , Signal Transduction/physiology , Uterine Diseases/therapy , Inflammation/therapy , Autophagy
2.
Zhen Ci Yan Jiu ; 48(9): 870-80, 2023 Sep 25.
Article in Zh | MEDLINE | ID: mdl-37730257

ABSTRACT

OBJECTIVE: It is to explore, based on stromal cell derived factor 1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) signal axis, whether the electroacupuncture (EA) combined with bone marrow mesenchymal stem cells (BMSCs) transplantation can promote thin endometrium regeneration and improve endometrial receptivity, so as to further study its mechanisms underlying improvement of promoting BMSCs homing to repair thin endometrium. METHODS: Thirty matured female SD rats were randomly divided into normal control , model , BMSCs transplantation (BMSCs), BMSCs+AMD3100 (a specific antagonist of CXCR4, BMSCs+AMD3100), BMSCs+EA, and BMSCs+EA+AMD3100 groups, with 5 rats in each group. The thin endometrial model was established by intrauterine injection of 95% ethanol during the period of estrus. Rats of the model group received intravenous injection of PBS solution (tail vein) on day 1, 3 and 7 of modeling and intraperitoneal injection of normal saline once daily for 3 estrous cycles. Rats of the BMSCs group received intravenous injection of BMSCs suspension on day 1,3 and 7 of modeling, and those of the BMSCs+EA group received BMSCs transplantation and EA stimulation. EA (2 Hz/15 Hz, 1 mA) was applied to "Guanyuan" (CV4) and bilateral "Sanyinjiao"(SP9), "Zigong" (EX-CA1) for 15 min, once daily for 3 estrous cycles. Rats of the BMSCs+AMD3100 group received intravenous injection of BMSCs suspension (1×106/mL) and intraperitoneal injection of AMD3100 (5 mg/kg), and those of the BMSCs+EA+AMD3100 group received administration of BMSCs, AMD3100 and EA, with both groups being once daily for 3 estrous cycles. H.E. staining was used to observe histopathological changes of endometrium tissues, and immunohistochemistry was used to detect the expressions of cytokeratin (CK19) and vimentin in endometrium (for evaluating the damage and repair of endometrium). The expression levels of homeobox A10 (HOXA10), leukemia inhibitory factor (LIF), SDF-1 and CXCR4 proteins were detected by Western blot, and those of SDF-1 and CXCR4 mRNAs in the endometrium detected by real-time PCR. RESULTS: In comparison with the normal control group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression leve-ls of HOXA10, LIF and CXCR4 proteins and CXCR4 mRNA were significantly down-regulated (P<0.01), and the expression levels of SDF-1 protein and mRNA significantly up-regulated (P<0.05) in the model group. Compared with the model group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, and the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs group, and the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA, and SDF-1 protein and mRNA in the BMSCs+EA group were significantly up-regulated (P<0.05, P<0.01). Compared to the BMSCs group, the number of endometrial glands, and the expression levels of LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+EA group were up-regulated (P<0.01, P<0.05); the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+AMD3100 group were down-regulated (P<0.01). Compared to the BMSCs+EA group, the number of endometrial glands, the immunoactivity of CK19 and vimentin, the expression levels of HOXA10, LIF, CXCR4 proteins and CXCR4 mRNA in the BMSCs+EA+AMD3100 group were down-regulated (P<0.01). Results of H.E. staining showed thin endometrium with absence of epithelial cells, and sparse glands and blood vessels, with smaller glandular cavity in the model group, which was relative milder in BMSCs and BMSCs+EA groups. CONCLUSION: EA can promote the transfer of transplanted BMSCs to the damaged site through SDF-1/CXCR4 signaling related stem cell homing, thereby promoting thin endometrial regeneration, repairing endometrial injury, and improving endometrial tolerance in rats with thin endometrium.


Subject(s)
Electroacupuncture , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Female , Animals , Rats , Rats, Sprague-Dawley , Vimentin , Receptors, CXCR4/genetics , Chemokine CXCL12/genetics , Bone Marrow , Endometrium
SELECTION OF CITATIONS
SEARCH DETAIL