Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Nature ; 609(7928): 754-760, 2022 09.
Article in English | MEDLINE | ID: mdl-35940203

ABSTRACT

Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1-5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.


Subject(s)
COVID-19 , GTPase-Activating Proteins , Genome-Wide Association Study , Guanine Nucleotide Exchange Factors , Host Microbial Interactions , SARS-CoV-2 , Alleles , Animals , COVID-19/complications , COVID-19/genetics , COVID-19/immunology , COVID-19/physiopathology , Disease Models, Animal , GTPase-Activating Proteins/antagonists & inhibitors , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Genetic Predisposition to Disease , Guanine Nucleotide Exchange Factors/antagonists & inhibitors , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Host Microbial Interactions/genetics , Host Microbial Interactions/immunology , Humans , Interferon Type I/genetics , Interferon Type I/immunology , Japan , Lung/pathology , Macrophages , Mesocricetus , Middle Aged , Pneumonia/complications , Pyrazoles/pharmacology , RNA-Seq , SARS-CoV-2/pathogenicity , Viral Load , Weight Loss
2.
Allergol Int ; 73(1): 94-106, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37336695

ABSTRACT

BACKGROUND: Mepolizumab treatment improves symptom control and quality of life and reduces exacerbations in patients with severe eosinophilic asthma. However, biomarkers that predict therapeutic effectiveness must be determined for use in precision medicine. Herein, we elucidated the dynamics of various parameters before and after treatment as well as patient characteristics predictive of clinical responsiveness to mepolizumab after 1-year treatment. METHODS: Twenty-seven patients with severe asthma were treated with mepolizumab for one year. Asthma control test scores, pulmonary function tests, fractional exhaled nitric oxide levels, and blood samples were evaluated. Additionally, we explored the role of CD69-positive mucosal-associated invariant T (MAIT) cells as a candidate biomarker for predicting treatment effectiveness by evaluating an OVA-induced asthma murine model using MR1 knockout mice, where MAIT cells were absent. RESULTS: The frequencies of CD69-positive group 1 innate lymphoid cells, group 3 innate lymphoid cells, natural killer cells, and MAIT cells decreased after mepolizumab treatment. The frequency of CD69-positive MAIT cells and neutrophils was lower and serum periostin levels were higher in responders than in non-responders. In the OVA-induced asthma murine model, CD69-positive MAIT cell count in the whole mouse lung was significantly higher than that in the control mice. Moreover, OVA-induced eosinophilic airway inflammation was exacerbated in the MAIT cell-deficient MR1 knockout mice. CONCLUSIONS: This study shows that circulating CD69-positive MAIT cells, neutrophils, and serum periostin might predict the real-world response after 1-year mepolizumab treatment. Furthermore, MAIT cells potentially have a protective role against type 2 airway inflammation.


Subject(s)
Asthma , Mucosal-Associated Invariant T Cells , Humans , Animals , Mice , Neutrophils , Periostin , Immunity, Innate , Disease Models, Animal , Ovalbumin/therapeutic use , Quality of Life , Lymphocytes , Inflammation , Biomarkers , Mice, Knockout
3.
Allergol Int ; 73(2): 206-213, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37996384

ABSTRACT

BACKGROUND: Multiple prolonged symptoms are observed in patients who recover from an acute COVID-19 infection, which is defined as long COVID. General fatigue is frequently observed in patients with long COVID during acute and post-acute phases. This study aimed to identify the specific risk factors for general fatigue in long COVID. METHODS: Hospitalized patients with COVID-19 aged over 18 years were enrolled in a multicenter cohort study at 26 medical institutions. Clinical data during hospitalization and patient-reported outcomes after discharge were collected from medical records, paper-based questionnaires, and smartphone apps. RESULTS: Among prolonged symptoms through 1-year follow-ups, general fatigue was the most interfering symptom in daily life. Patients with protracted fatigue at all follow-up periods had lower quality of life scores at the 12-month follow-up. Univariate logistic regression analysis of the presence or absence of general fatigue at the 3-month, 6-month, and 12-month follow-ups identified asthma, younger age, and female sex as risk factors for prolonged fatigue. Multivariable logistic regression analysis revealed that asthma was an independent risk factor for persistent fatigue during the 12-month follow-up period. Longitudinal changes in the symptoms of patients with or without asthma demonstrated that general fatigue, not cough and dyspnea, was significantly prolonged in patients with asthma. CONCLUSIONS: In a Japanese population with long COVID, prolonged general fatigue was closely linked to asthma. A preventive approach against COVID-19 is necessary to avoid sustained fatigue and minimize social and economic losses in patients with asthma.


Subject(s)
Asthma , COVID-19 , Adult , Female , Humans , Middle Aged , Asthma/epidemiology , Cohort Studies , COVID-19/epidemiology , Fatigue/epidemiology , Japan/epidemiology , Post-Acute COVID-19 Syndrome , Quality of Life , Risk Factors , Male , Young Adult
4.
Curr Issues Mol Biol ; 45(11): 8907-8924, 2023 Nov 08.
Article in English | MEDLINE | ID: mdl-37998736

ABSTRACT

The mitogen-activated protein kinase (MAPK) signaling pathway is involved in the epithelial-mesenchymal transition (EMT) and asthma; however, the role of mitogen-activated protein kinase kinase kinase 19 (MAP3K19) remains uncertain. Therefore, we investigated the involvement of MAP3K19 in in vitro EMT and ovalbumin (OVA)-induced asthma murine models. The involvement of MAP3K19 in the EMT and the production of cytokines and chemokines were analyzed using a cultured bronchial epithelial cell line, BEAS-2B, in which MAP3K19 was knocked down using small interfering RNA. We also evaluated the involvement of MAP3K19 in the OVA-induced asthma murine model using Map3k19-deficient (MAP3K19-/-) mice. Transforming growth factor beta 1 (TGF-ß1) and tumor necrosis factor-like weak inducer of apoptosis (TWEAK) induced the MAP3K19 messenger RNA (mRNA) expression in the BEAS-2B cells. The knockdown of MAP3K19 enhanced the reduction in E-cadherin mRNA and the production of regulated upon activation normal T cell express sequence (RANTES) via stimulation with TWEAK alone or with the combination of TGF-ß1 and TWEAK. Furthermore, the expression of MAP3K19 mRNA was upregulated in both the lungs and tracheas of the mice in the OVA-induced asthma murine model. The MAP3K19-/- mice exhibited worsened eosinophilic inflammation and an increased production of RANTES in the airway epithelium compared with the wild-type mice. These findings indicate that MAP3K19 suppressed the TWEAK-stimulated airway epithelial response, including adhesion factor attenuation and RANTES production, and suppressed allergic airway inflammation in an asthma mouse model, suggesting that MAP3K19 regulates allergic airway inflammation in patients with asthma.

5.
J Gene Med ; 25(1): e3457, 2023 01.
Article in English | MEDLINE | ID: mdl-36278965

ABSTRACT

BACKGROUND: The delivery of adeno-associated virus (AAV) vectors via the cerebrospinal fluid (CSF) has emerged as a valuable method for widespread transduction in the central nervous system. Although infusion into the cerebral ventricles is a common protocol in preclinical studies of small animals, the cisterna magna has been recognized as an alternative target for clinical studies because it can be reached in a less invasive manner using an intrathecal catheter via the subarachnoid space from a lumbar puncture. METHODS: We evaluated the early distribution of fluorine-18-labeled AAV9 vectors infused into the lateral ventricle or cisterna magna of four non-human primates using positron emission tomography. The expression of the green fluorescent protein was immunohistochemically determined. RESULTS: In both approaches, the labeled vectors diffused into the broad arachnoid space around the brain stem and cervical spinal cord within 30 min. Both infusion routes efficiently transduced neurons in the cervical spinal cord. CONCLUSIONS: For gene therapy that primarily targets the cervical spinal cord and brainstem, such as amyotrophic lateral sclerosis, cisterna magna infusion would be a feasible and effective administration method.


Subject(s)
Genetic Therapy , Spinal Cord , Animals , Transduction, Genetic , Spinal Cord/metabolism , Genetic Therapy/methods , Primates/genetics , Genetic Vectors/genetics , Dependovirus/genetics
6.
Respir Res ; 24(1): 241, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37798709

ABSTRACT

BACKGROUND: Computed tomography (CT) imaging and artificial intelligence (AI)-based analyses have aided in the diagnosis and prediction of the severity of COVID-19. However, the potential of AI-based CT quantification of pneumonia in assessing patients with COVID-19 has not yet been fully explored. This study aimed to investigate the potential of AI-based CT quantification of COVID-19 pneumonia to predict the critical outcomes and clinical characteristics of patients with residual lung lesions. METHODS: This retrospective cohort study included 1,200 hospitalized patients with COVID-19 from four hospitals. The incidence of critical outcomes (requiring the support of high-flow oxygen or invasive mechanical ventilation or death) and complications during hospitalization (bacterial infection, renal failure, heart failure, thromboembolism, and liver dysfunction) was compared between the groups of pneumonia with high/low-percentage lung lesions, based on AI-based CT quantification. Additionally, 198 patients underwent CT scans 3 months after admission to analyze prognostic factors for residual lung lesions. RESULTS: The pneumonia group with a high percentage of lung lesions (N = 400) had a higher incidence of critical outcomes and complications during hospitalization than the low percentage group (N = 800). Multivariable analysis demonstrated that AI-based CT quantification of pneumonia was independently associated with critical outcomes (adjusted odds ratio [aOR] 10.5, 95% confidence interval [CI] 5.59-19.7), as well as with oxygen requirement (aOR 6.35, 95% CI 4.60-8.76), IMV requirement (aOR 7.73, 95% CI 2.52-23.7), and mortality rate (aOR 6.46, 95% CI 1.87-22.3). Among patients with follow-up CT scans (N = 198), the multivariable analysis revealed that the pneumonia group with a high percentage of lung lesions on admission (aOR 4.74, 95% CI 2.36-9.52), older age (aOR 2.53, 95% CI 1.16-5.51), female sex (aOR 2.41, 95% CI 1.13-5.11), and medical history of hypertension (aOR 2.22, 95% CI 1.09-4.50) independently predicted persistent residual lung lesions. CONCLUSIONS: AI-based CT quantification of pneumonia provides valuable information beyond qualitative evaluation by physicians, enabling the prediction of critical outcomes and residual lung lesions in patients with COVID-19.


Subject(s)
COVID-19 , Pneumonia , Humans , Female , COVID-19/diagnostic imaging , COVID-19/pathology , Artificial Intelligence , Retrospective Studies , Japan/epidemiology , SARS-CoV-2 , Lung/pathology , Pneumonia/pathology , Tomography, X-Ray Computed/methods , Oxygen
7.
Ann Hematol ; 102(11): 3239-3249, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37581712

ABSTRACT

An association between coronavirus disease 2019 (COVID-19) and the ABO blood group has been reported. However, such an association has not been studied in the Japanese population on a large scale. Little is known about the association between COVID-19 and ABO genotype. This study investigated the association between COVID-19 and ABO blood group/genotype in a large Japanese population. All Japanese patients diagnosed with COVID-19 were recruited through the Japan COVID-19 Task Force between February 2020 and October 2021. We conducted a retrospective cohort study involving 1790 Japanese COVID-19 patients whose DNA was used for a genome-wide association study. We compared the ABO blood group/genotype in a healthy population (n = 611, control) and COVID-19 patients and then analyzed their associations and clinical outcomes. Blood group A was significantly more prevalent (41.6% vs. 36.8%; P = 0.038), and group O was significantly less prevalent (26.2% vs. 30.8%; P = 0.028) in the COVID-19 group than in the control group. Moreover, genotype OO was significantly less common in the COVID-19 group. Furthermore, blood group AB was identified as an independent risk factor for most severe diseases compared with blood group O [aOR (95% CI) = 1.84 (1.00-3.37)]. In ABO genotype analysis, only genotype AB was an independent risk factor for most severe diseases compared with genotype OO. Blood group O is protective, whereas group A is associated with the risk of infection. Moreover, blood group AB is associated with the risk of the "most" severe disease.

8.
J Infect Chemother ; 29(4): 422-426, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36682606

ABSTRACT

OBJECTIVES: We investigated the occurrence of non-respiratory bacterial and fungal secondary infections, causative organisms, impact on clinical outcomes, and association between the secondary pathogens and mortality in hospitalized patients with coronavirus disease 2019 (COVID-19). METHODS: This was a retrospective cohort study that included data from inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021). We obtained demographic, epidemiological, and microbiological data throughout the course of hospitalization and analyzed the cases of COVID-19 complicated by non-respiratory bacterial infections. RESULTS: Of the 1914 patients included, non-respiratory bacterial infections with COVID-19 were diagnosed in 81 patients (4.2%). Of these, 59 (3.1%) were secondary infections. Bacteremia was the most frequent bacterial infection, occurring in 33 cases (55.9%), followed by urinary tract infections in 16 cases (27.1%). Staphylococcus epidermidis was the most common causative organism of bacteremia. Patients with COVID-19 with non-respiratory secondary bacterial infections had significantly higher mortality, and a multivariate logistic regression analysis demonstrated that those with bacteremia (aOdds Ratio = 15.3 [5.97-39.1]) were at higher risk of death. Multivariate logistic regression analysis showed that age, male sex, use of steroids to treat COVID-19, and intensive care unit admission increased the risk for nosocomial bacteremia. CONCLUSIONS: Secondary bacteremia is an important complication that may lead to poor prognosis in cases with COVID-19. An appropriate medical management strategy must be established, especially for patients with concomitant predisposing factors.


Subject(s)
Bacteremia , Bacterial Infections , COVID-19 , Coinfection , Mycoses , Humans , Male , COVID-19/complications , COVID-19/epidemiology , Retrospective Studies , Coinfection/epidemiology , Bacteremia/drug therapy , Bacteremia/epidemiology , Bacteremia/microbiology , Bacterial Infections/microbiology , Mycoses/microbiology , COVID-19 Testing
9.
BMC Pulm Med ; 23(1): 70, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36814205

ABSTRACT

BACKGROUND: Acute exacerbation (AE) of interstitial lung disease (ILD) (AE-ILD) is a life-threatening condition and the leading cause of 30-day mortality among patients who underwent pulmonary resection for lung cancer in Japan. This study was conducted to clarify the characteristics of the immune environment of lung tissues before the onset of AE-ILD. METHODS: This retrospective matched case-control study compared the immune phenotypes of helper T cells in lung tissues from patients with and without AE-ILD after surgery. In total, 135 patients who underwent surgical resection for lung cancer and were pathologically diagnosed with idiopathic interstitial pneumonia (IIP) at our institute between 2009 and 2018 were enrolled. Thirteen patients with AE-IIP and 122 patients without AE (non-AE) were matched using a propensity score analysis, and 12 cases in each group were compared. We evaluated the percentages of T helper (Th)1, Th2, Th17, regulatory T (Treg), and CD8 cells in CD3+ T cells and the Th1:Th2, Th17:Treg, and CD8:Treg ratios in patients with AE by immunostaining of lung tissues in the non-tumor area. RESULTS: We found a significant difference in the lung Th17:Treg ratio between the AE and non-AE groups (1.47 and 0.79, p = 0.041). However, we detected no significant differences in the percentages of lung Th1 (21.3% and 29.0%), Th2 (34.2% and 42.7%), Th17 (22.3% and 21.6%), Treg (19.6% and 29.1%), and CD8+ T cells (47.2% and 42.2%) of CD3+ T cells between the AE and non-AE groups. CONCLUSION: The ratio of Th17:Treg cells in lung tissues was higher in participants in the AE group than in those in the non-AE group. CLINICAL TRIAL REGISTRATION: This study was approved by the ethics committee of our institute (2,016,095).


Subject(s)
Idiopathic Interstitial Pneumonias , Lung Diseases, Interstitial , Lung Neoplasms , Humans , T-Lymphocytes, Regulatory , Case-Control Studies , Retrospective Studies , Th17 Cells , CD8-Positive T-Lymphocytes , Lung Diseases, Interstitial/diagnosis , Lung , Disease Progression
10.
BMC Pulm Med ; 23(1): 146, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37101265

ABSTRACT

BACKGROUND: Although cases of respiratory bacterial infections associated with coronavirus disease 2019 (COVID-19) have often been reported, their impact on the clinical course remains unclear. Herein, we evaluated and analyzed the complication rates of bacterial infections, causative organisms, patient backgrounds, and clinical outcome in Japanese patients with COVID-19. METHODS: We performed a retrospective cohort study that included inpatients with COVID-19 from multiple centers participating in the Japan COVID-19 Taskforce (April 2020 to May 2021) and obtained demographic, epidemiological, and microbiological results and the clinical course and analyzed the cases of COVID-19 complicated by respiratory bacterial infections. RESULTS: Of the 1,863 patients with COVID-19 included in the analysis, 140 (7.5%) had respiratory bacterial infections. Community-acquired co-infection at COVID-19 diagnosis was uncommon (55/1,863, 3.0%) and was mainly caused by Staphylococcus aureus, Klebsiella pneumoniae and Streptococcus pneumoniae. Hospital-acquired bacterial secondary infections, mostly caused by Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia, were diagnosed in 86 patients (4.6%). Severity-associated comorbidities were frequently observed in hospital-acquired secondary infection cases, including hypertension, diabetes, and chronic kidney disease. The study results suggest that the neutrophil-lymphocyte ratio (> 5.28) may be useful in diagnosing complications of respiratory bacterial infections. COVID-19 patients with community-acquired or hospital-acquired secondary infections had significantly increased mortality. CONCLUSIONS: Respiratory bacterial co-infections and secondary infections are uncommon in patients with COVID-19 but may worsen outcomes. Assessment of bacterial complications is important in hospitalized patients with COVID-19, and the study findings are meaningful for the appropriate use of antimicrobial agents and management strategies.


Subject(s)
Bacterial Infections , COVID-19 , Coinfection , Community-Acquired Infections , Cross Infection , Respiratory Tract Infections , Staphylococcal Infections , Humans , COVID-19/complications , COVID-19/epidemiology , SARS-CoV-2 , Retrospective Studies , Coinfection/epidemiology , COVID-19 Testing , East Asian People , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Respiratory Tract Infections/epidemiology , Community-Acquired Infections/epidemiology , Disease Progression
11.
Am J Transplant ; 22(12): 2804-2820, 2022 12.
Article in English | MEDLINE | ID: mdl-35997569

ABSTRACT

IL-26 is a Th17 cytokine, with its gene being absent in rodents. To characterize the in vivo immunological effects of IL-26 in chronic systemic inflammation, we used human IL26 transgenic (hIL-26Tg) mice and human umbilical cord blood mononuclear cells (hCBMC) in mouse allogeneic-graft-versus-host disease (GVHD) and chronic xenogeneic-GVHD model, respectively. Transfer of bone marrow and spleen T cells from hIL-26Tg mice into B10.BR mice resulted in GVHD progression, with clinical signs of tissue damage in multiple organs. IL-26 markedly increased neutrophil levels both in the GVHD-target tissues and peripheral blood. Expression levels of Th17 cytokines in hIL-26Tg mice-derived donor CD4 T cells were significantly increased, whereas IL-26 did not affect cytotoxic function of donor CD8 T cells. In addition, granulocyte-colony stimulating factor, IL-1ß, and IL-6 levels were particularly enhanced in hIL-26Tg mice. We also developed a humanized neutralizing anti-IL-26 monoclonal antibody (mAb) for therapeutic use, and its administration after onset of chronic xenogeneic-GVHD mitigated weight loss and prolonged survival, with preservation of graft-versus-leukemia effect. Taken together, our data elucidate the in vivo immunological effects of IL-26 in chronic GVHD models and suggest that a humanized anti-IL-26 mAb may be a potential therapeutic agent for the treatment of chronic GVHD.


Subject(s)
Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Humans , Animals , Graft vs Host Disease/drug therapy , Graft vs Host Disease/etiology , CD8-Positive T-Lymphocytes , Antibodies, Monoclonal, Humanized/therapeutic use , Mice, Transgenic , Cytokines , Mice, Inbred C57BL , Bone Marrow Transplantation
12.
Respir Res ; 23(1): 365, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36539765

ABSTRACT

RATIONALE: Bronchiectasis and bronchiolitis are differential diagnoses of asthma; moreover, they are factors associated with worse asthma control. OBJECTIVE: We determined clinical courses of bronchiectasis/bronchiolitis-complicated asthma by inflammatory subtypes as well as factors affecting them. METHODS: We conducted a survey of refractory asthma with non-cystic fibrosis bronchiectasis/bronchiolitis in Japan. Cases were classified into three groups, based on the latest fractional exhaled NO (FeNO) level (32 ppb for the threshold) and blood eosinophil counts (320/µL for the threshold): high (type 2-high) or low (type 2-low) FeNO and eosinophil and high FeNO or eosinophil (type 2-intermediate). Clinical courses in groups and factors affecting them were analysed. RESULTS: In total, 216 cases from 81 facilities were reported, and 142 were stratified: 34, 40 and 68 into the type 2-high, -intermediate and -low groups, respectively. The frequency of bronchopneumonia and exacerbations requiring antibiotics and gram-negative bacteria detection rates were highest in the type 2-low group. Eighty-seven cases had paired latest and oldest available data of FeNO and eosinophil counts; they were analysed for inflammatory transition patterns. Among former type 2-high and -intermediate groups, 32% had recently transitioned to the -low group, to which relatively low FeNO in the past and oral corticosteroid use contributed. Lastly, in cases treated with moderate to high doses of inhaled corticosteroids, the frequencies of exacerbations requiring antibiotics were found to be higher in cases with more severe airway lesions and lower FeNO. CONCLUSIONS: Bronchiectasis/bronchiolitis-complicated refractory asthma is heterogeneous. In patients with sputum symptoms and low FeNO, airway colonisation of pathogenic bacteria and infectious episodes are common; thus, corticosteroids should be carefully used.


Subject(s)
Asthma , Bronchiectasis , Humans , Nitric Oxide/analysis , Asthma/diagnosis , Asthma/drug therapy , Asthma/epidemiology , Eosinophils , Bronchiectasis/diagnosis , Bronchiectasis/drug therapy , Bronchiectasis/epidemiology , Adrenal Cortex Hormones/therapeutic use , Exhalation
13.
Respir Res ; 23(1): 315, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36380316

ABSTRACT

BACKGROUND: Respiratory symptoms are associated with coronavirus disease 2019 (COVID-19) outcomes. However, the impacts of upper and lower respiratory symptoms on COVID-19 outcomes in the same population have not been compared. The objective of this study was to characterize upper and lower respiratory symptoms and compare their impacts on outcomes of hospitalized COVID-19 patients. METHODS: This was a multicenter, retrospective cohort study; the database from the Japan COVID-19 Task Force was used. A total of 3314 COVID-19 patients were included in the study, and the data on respiratory symptoms were collected. The participants were classified according to their respiratory symptoms (Group 1: no respiratory symptoms, Group 2: only upper respiratory symptoms, Group 3: only lower respiratory symptoms, and Group 4: both upper and lower respiratory symptoms). The impacts of upper and lower respiratory symptoms on the clinical outcomes were compared. The primary outcome was the percentage of patients with poor clinical outcomes, including the need for oxygen supplementation via high-flow oxygen therapy, mechanical ventilation, and extracorporeal membrane oxygenation or death. RESULTS: Of the 3314 COVID-19 patients, 605, 1331, 1229, and 1149 were classified as Group 1, Group 2, Group 3, and Group 4, respectively. In univariate analysis, patients in Group 2 had the best clinical outcomes among all groups (odds ratio [OR]: 0.21, 95% confidence interval [CI]: 0.11-0.39), while patients in Group 3 had the worst outcomes (OR: 3.27, 95% CI: 2.43-4.40). Group 3 patients had the highest incidence of pneumonia, other complications due to secondary infections, and thrombosis during the clinical course. CONCLUSIONS: Upper and lower respiratory tract symptoms had vastly different impacts on the clinical outcomes of COVID-19.


Subject(s)
COVID-19 , Humans , COVID-19/therapy , SARS-CoV-2 , Retrospective Studies , Respiration, Artificial , Oxygen Inhalation Therapy
14.
BMC Infect Dis ; 22(1): 735, 2022 Sep 14.
Article in English | MEDLINE | ID: mdl-36104674

ABSTRACT

BACKGROUND: The clinical course of coronavirus disease (COVID-19) is diverse, and the usefulness of phenotyping in predicting the severity or prognosis of the disease has been demonstrated overseas. This study aimed to investigate clinically meaningful phenotypes in Japanese COVID-19 patients using cluster analysis. METHODS: From April 2020 to May 2021, data from inpatients aged ≥ 18 years diagnosed with COVID-19 and who agreed to participate in the study were collected. A total of 1322 Japanese patients were included. Hierarchical cluster analysis was performed using variables reported to be associated with COVID-19 severity or prognosis, namely, age, sex, obesity, smoking history, hypertension, diabetes mellitus, malignancy, chronic obstructive pulmonary disease, hyperuricemia, cardiovascular disease, chronic liver disease, and chronic kidney disease. RESULTS: Participants were divided into four clusters: Cluster 1, young healthy (n = 266, 20.1%); Cluster 2, middle-aged (n = 245, 18.5%); Cluster 3, middle-aged obese (n = 435, 32.9%); and Cluster 4, elderly (n = 376, 28.4%). In Clusters 3 and 4, sore throat, dysosmia, and dysgeusia tended to be less frequent, while shortness of breath was more frequent. Serum lactate dehydrogenase, ferritin, KL-6, D-dimer, and C-reactive protein levels tended to be higher in Clusters 3 and 4. Although Cluster 3 had a similar age as Cluster 2, it tended to have poorer outcomes. Both Clusters 3 and 4 tended to exhibit higher rates of oxygen supplementation, intensive care unit admission, and mechanical ventilation, but the mortality rate tended to be lower in Cluster 3. CONCLUSIONS: We have successfully performed the first phenotyping of COVID-19 patients in Japan, which is clinically useful in predicting important outcomes, despite the simplicity of the cluster analysis method that does not use complex variables.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , COVID-19/epidemiology , Cluster Analysis , Humans , Japan/epidemiology , Obesity , Prognosis
15.
BMC Infect Dis ; 22(1): 935, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510172

ABSTRACT

BACKGROUND: We aimed to elucidate differences in the characteristics of patients with coronavirus disease 2019 (COVID-19) requiring hospitalization in Japan, by COVID-19 waves, from conventional strains to the Delta variant. METHODS: We used secondary data from a database and performed a retrospective cohort study that included 3261 patients aged ≥ 18 years enrolled from 78 hospitals that participated in the Japan COVID-19 Task Force between February 2020 and September 2021. RESULTS: Patients hospitalized during the second (mean age, 53.2 years [standard deviation {SD}, ± 18.9]) and fifth (mean age, 50.7 years [SD ± 13.9]) COVID-19 waves had a lower mean age than those hospitalized during the other COVID-19 waves. Patients hospitalized during the first COVID-19 wave had a longer hospital stay (mean, 30.3 days [SD ± 21.5], p < 0.0001), and post-hospitalization complications, such as bacterial infections (21.3%, p < 0.0001), were also noticeable. In addition, there was an increase in the use of drugs such as remdesivir/baricitinib/tocilizumab/steroids during the latter COVID-19 waves. In the fifth COVID-19 wave, patients exhibited a greater number of presenting symptoms, and a higher percentage of patients required oxygen therapy at the time of admission. However, the percentage of patients requiring invasive mechanical ventilation was the highest in the first COVID-19 wave and the mortality rate was the highest in the third COVID-19 wave. CONCLUSIONS: We identified differences in clinical characteristics of hospitalized patients with COVID-19 in each COVID-19 wave up to the fifth COVID-19 wave in Japan. The fifth COVID-19 wave was associated with greater disease severity on admission, the third COVID-19 wave had the highest mortality rate, and the first COVID-19 wave had the highest percentage of patients requiring mechanical ventilation.


Subject(s)
COVID-19 , Humans , Middle Aged , Retrospective Studies , COVID-19/epidemiology , SARS-CoV-2 , Patients , Hospitalization
16.
J Neuroinflammation ; 18(1): 288, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34893067

ABSTRACT

PURPOSE: While marked reductions in neural activity and mitochondrial function have been reported in Alzheimer's disease (AD), the degree of mitochondrial activity in mild cognitive impairment (MCI) or early-stage AD remains unexplored. Here, we used positron emission tomography (PET) to examine the direct relationship between mitochondrial activity (18F-BCPP-EF) and ß-amyloid (Aß) deposition (11C-PiB) in the same brains of senescence-accelerated mouse prone 10 (SAMP10) mice, an Aß-developing neuroinflammatory animal model showing accelerated senescence with deterioration in cognitive functioning similar to that in MCI. METHODS: Five- to 25-week-old SAMP10 and control SAMR1 mice, were used in the experiments. PET was used to measure the binding levels (standard uptake value ratios; SUVRs) of [18F]2-tert-butyl-4-chloro-5-2H-pyridazin-3-one (18F-BCPP-EF) for mitochondrial complex 1 availability, and 11C-PiB for Aß deposition, in the same animals, and immunohistochemistry for ATPB (an ATP synthase on the mitochondrial inner membrane) was also performed, to determine changes in mitochondrial activity in relation to amyloid burden during the early stage of cognitive impairment. RESULTS: The SUVR of 18F-BCPP-EF was significantly lower and that of 11C-PiB was higher in the 15-week-old SAMP10 mice than in the control and 5-week-old SAMP10 mice. The two parameters were found to negatively correlate with each other. The immunohistochemical analysis demonstrated temporal upregulation of ATPB levels at 15-week-old, but decreased at 25 week-old SAMP10 mice. CONCLUSION: The present results provide in vivo evidence of a decrease in mitochondrial energy production and elevated amyloidosis at an early stage in SAMP10 mice. The inverse correlation between these two phenomena suggests a concurrent change in neuronal energy failure by Aß-induced elevation of neuroinflammatory responses. Comparison of PET data with histological findings suggests that temporal increase of ATPB level may not be neurofunctionally implicated during neuropathological processes, including Aß pathology, in an animal model of early-phase AD spectrum disorder.


Subject(s)
Aging/metabolism , Amyloidosis/metabolism , Brain/metabolism , Mitochondria/metabolism , Positron-Emission Tomography/methods , Aging/genetics , Aging/pathology , Amyloidosis/genetics , Amyloidosis/pathology , Animals , Brain/pathology , Mice , Mice, Transgenic , Mitochondria/genetics , Mitochondria/pathology
17.
Eur J Nucl Med Mol Imaging ; 48(13): 4307-4317, 2021 12.
Article in English | MEDLINE | ID: mdl-34117508

ABSTRACT

PURPOSE: P-glycoprotein (P-gp) function is altered in several brain disorders; thus, it is of interest to monitor the P-gp function in vivo using PET. (R)-[11C]verapamil is considered the gold standard tracer to measure the P-gp function; however, it presents some drawbacks that limit its use. New P-gp tracers have been developed with improved properties, such as [18F]MC225. This study compares the characteristics of (R)-[11C]verapamil and [18F]MC225 in the same subjects. METHODS: Three non-human primates underwent 4 PET scans: 2 with (R)-[11C]verapamil and 2 with [18F]MC225, at baseline and after P-gp inhibition. The 30-min PET data were analyzed using 1-Tissue Compartment Model (1-TCM) and metabolite-corrected plasma as input function. Tracer kinetic parameters at baseline and after inhibition were compared. Regional differences and simplified methods to quantify the P-gp function were also assessed. RESULTS: At baseline, [18F]MC225 VT values were higher, and k2 values were lower than those of (R)-[11C]verapamil, whereas K1 values were not significantly different. After inhibition, VT values of the 2 tracers were similar; however, (R)-[11C]verapamil K1 and k2 values were higher than those of [18F]MC225. Significant regional differences between tracers were found at baseline, which disappeared after inhibition. The positive slope of the SUV-TAC was positively correlated to the K1 and VT of both tracers. CONCLUSION: [18F]MC225 and (R)-[11C]verapamil show comparable sensitivity to measure the P-gp function in non-human primates. Moreover, this study highlights the 30-min VT as the best parameter to measure decreases in the P-gp function with both tracers. [18F]MC225 may become the first radiofluorinated tracer able to measure decreases and increases in the P-gp function due to its higher baseline VT.


Subject(s)
Blood-Brain Barrier , Verapamil , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Carbon Radioisotopes , Positron-Emission Tomography , Primates/metabolism
18.
BMC Infect Dis ; 21(1): 502, 2021 May 29.
Article in English | MEDLINE | ID: mdl-34051752

ABSTRACT

BACKGROUND: Heterozygous mutations in the transcription factor GATA2 result in a wide spectrum of clinical phenotypes, including monocytopenia and Mycobacterium avium complex (MAC) infection (MonoMAC) syndrome. Patients with MonoMAC syndrome typically are infected by disseminated nontuberculous mycobacteria, fungi, and human papillomavirus, exhibit pulmonary alveolar proteinosis during late adolescence or early adulthood, and manifest with decreased content of dendritic cells (DCs), monocytes, and B and natural killer (NK) cells. CASE PRESENTATION: A 39-year-old woman was diagnosed with MonoMAC syndrome postmortem. Although she was followed up based on the symptoms associated with leukocytopenia that was disguised as sarcoidosis with bone marrow involvement, she developed disseminated nontuberculous mycobacterial infection, fungemia, and MonoMAC syndrome after childbirth. Genetic testing revealed a heterozygous missense mutation in GATA2 (c.1114G > A, p.A372T). Immunohistochemistry and flow cytometry showed the disappearance of DCs and decreased frequency of NK cells in the bone marrow, respectively, after childbirth. CONCLUSIONS: To the best of our knowledge, this is the first study reporting that MonoMAC syndrome can be exacerbated after childbirth, and that immunohistochemistry of bone marrow sections to detect decreased DC content is useful to suspect MonoMAC syndrome.


Subject(s)
Fungemia/diagnosis , GATA2 Deficiency/genetics , GATA2 Transcription Factor/genetics , Leukopenia/diagnosis , Mycobacterium Infections, Nontuberculous/diagnosis , Adult , Anti-Bacterial Agents/therapeutic use , Fatal Outcome , Female , Fungemia/complications , Fungemia/drug therapy , GATA2 Deficiency/complications , Genetic Predisposition to Disease , Humans , Leukopenia/complications , Leukopenia/drug therapy , Lymph Nodes/pathology , Mutation , Mycobacterium Infections, Nontuberculous/complications , Mycobacterium Infections, Nontuberculous/drug therapy , Postpartum Period , Prednisone/therapeutic use , Pregnancy
19.
Allergol Int ; 70(3): 343-350, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33640239

ABSTRACT

BACKGROUND: Previous reports have shown that pathogen-associated patterns (PAMPs) induce the production of interleukin (IL)-1ß in macrophages. Moreover, studies using mouse models also suggest that chitin, which acts as a PAMP, induces adjuvant effects and eosinophilic infiltration in the lung. Thus, we investigated the effects of inhaled chitin in mouse models. METHODS: We developed mouse models of inhaled chitin particle-induced airway inflammation and steroid-resistant ovalbumin (OVA)-induced airway inflammation. Some experimental groups of mice were treated additionally with dexamethasone (DEX). Murine alveolar macrophages (AMs), which were purified from bronchoalveolar lavage (BAL) fluids, were incubated with chitin, and treated with or without DEX. RESULTS: The numbers of total cells, AMs, lymphocytes, eosinophils, and neutrophils among BAL-derived cells, as well as the IL-1ß levels in BAL fluids and the numbers of IL-1ß-positive cells in lung, were significantly increased by chitin stimulation. Airway hyperresponsiveness (AHR) was aggravated in mice of the chitin inflammation model compared to control animals. The production of IL-1ß was significantly increased in murine AMs by chitin treatment, but DEX administration did not inhibit this chitin-induced IL-1ß production. Furthermore, in mouse models, DEX treatment inhibited the OVA-induced airway inflammation and AHR but not the airway inflammation and AHR induced by chitin or the combination of OVA and chitin. CONCLUSIONS: These results suggest that inhaled chitin induces airway inflammation, AHR, and the production of IL-1ß. Furthermore, our findings demonstrate for the first time that inhaled chitin induces steroid-resistant airway inflammation and AHR. Inhaled chitin may contribute to features of steroid-resistant asthma.


Subject(s)
Chitin/immunology , Glucocorticoids/pharmacology , Inflammation/immunology , Lung/drug effects , Macrophages, Alveolar/drug effects , Respiratory Hypersensitivity/immunology , Administration, Inhalation , Animals , Asthma/chemically induced , Asthma/immunology , Asthma/physiopathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Chitin/pharmacology , Dexamethasone/pharmacology , Disease Models, Animal , Drug Resistance , Inflammation/chemically induced , Inflammation/physiopathology , Interleukin-1beta/drug effects , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Lung/immunology , Lung/physiopathology , Macrophages, Alveolar/immunology , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/drug effects , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Ovalbumin/immunology , Ovalbumin/pharmacology , Pathogen-Associated Molecular Pattern Molecules , Respiratory Hypersensitivity/chemically induced , Respiratory Hypersensitivity/physiopathology
20.
Eur Respir J ; 55(5)2020 05.
Article in English | MEDLINE | ID: mdl-32139458

ABSTRACT

BACKGROUND: High exhaled nitric oxide fraction (F ENO) levels are associated with greater risk of asthma exacerbation. However, it is not clear how F ENO can be used to guide safe reductions in inhaled corticosteroid (ICS) doses in asthma patients. This study assesses the ability of F ENO to guide ICS reductions. METHODS: Systematic searching of electronic databases identified prospective observational studies and randomised controlled trials which recruited participants with mild-to-moderate asthma aged ≥12 years and measured F ENO before reducing ICS. We performed multilevel mixed-effects logistic regression in relation to acute exacerbations and estimated each participant's exacerbation risk using our logistic regression model. RESULTS: We included data from seven out of eight eligible studies, representing 384 participants. ICS doses were halved in four studies and withdrawn in three studies. A baseline F ENO measurement of ≥50 ppb was associated with increased risk of exacerbations (crude OR 3.14, 95% CI 1.41-7.00, p=0.005; adjusted OR 3.08, 95% CI 1.36-6.98, p=0.007) and corresponded to an estimated exacerbation risk cut-off of 15%. Reducing ICS when estimated exacerbation risk was <15% versus <10% would result in fewer patients remaining on the same ICS dose (40 (10.4%) out of 384 versus 141 (36.7%) out of 384), but similar proportions of patients avoiding exacerbations (222 (91.4%) out of 243, 95% CI 87.1-94.6% versus 311 (90.4%) out of 344, 95% CI 86.8-93.3%). CONCLUSION: In patients with mild-to-moderate asthma, gradual ICS reduction when F ENO is <50 ppb may help decrease ICS use without increasing exacerbations. Future research should aim to validate these findings in larger populations.


Subject(s)
Asthma/diagnosis , Nitric Oxide/analysis , Administration, Inhalation , Adrenal Cortex Hormones/therapeutic use , Asthma/drug therapy , Asthma/physiopathology , Disease Progression , Exhalation , Humans , Predictive Value of Tests , Prognosis , Randomized Controlled Trials as Topic
SELECTION OF CITATIONS
SEARCH DETAIL