Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 120(10): e2216894120, 2023 03 07.
Article in English | MEDLINE | ID: mdl-36848555

ABSTRACT

Drought tolerance is a highly complex trait controlled by numerous interconnected pathways with substantial variation within and across plant species. This complexity makes it difficult to distill individual genetic loci underlying tolerance, and to identify core or conserved drought-responsive pathways. Here, we collected drought physiology and gene expression datasets across diverse genotypes of the C4 cereals sorghum and maize and searched for signatures defining water-deficit responses. Differential gene expression identified few overlapping drought-associated genes across sorghum genotypes, but using a predictive modeling approach, we found a shared core drought response across development, genotype, and stress severity. Our model had similar robustness when applied to datasets in maize, reflecting a conserved drought response between sorghum and maize. The top predictors are enriched in functions associated with various abiotic stress-responsive pathways as well as core cellular functions. These conserved drought response genes were less likely to contain deleterious mutations than other gene sets, suggesting that core drought-responsive genes are under evolutionary and functional constraints. Our findings support a broad evolutionary conservation of drought responses in C4 grasses regardless of innate stress tolerance, which could have important implications for developing climate resilient cereals.


Subject(s)
Sorghum , Zea mays , Zea mays/genetics , Sorghum/genetics , Droughts , Edible Grain/genetics , Poaceae
2.
Plant J ; 2024 May 19.
Article in English | MEDLINE | ID: mdl-38762880

ABSTRACT

Diacylglycerol acyltransferase1 (DGAT1) is the major enzyme that synthesizes triacylglycerols (TAG) during Arabidopsis seed development. Mutant dgat1 seeds possess low oil content in addition to a high polyunsaturated fatty acid (PUFA) composition. Two genes encoding endoplasmic reticulum localized desaturase enzymes, fatty acid desaturase2 (FAD2) and fatty acid desaturase3 (FAD3), were upregulated in both dgat1-1 and dgat1-2 developing seeds. Crosses between both dgat1 mutant alleles and fad2-1 failed to generate plants homozygous for both dgat1 and fad2. Reciprocal crosses with wild-type plants demonstrated that both male and female dgat1 fad2 gametophytes were viable. Siliques from DGAT1/dgat1-1 fad2-1/fad2-1 and dgat1-1/dgat1-1 FAD2/fad2-1 possessed abnormal looking seeds that were arrested in the torpedo growth stage. Approximately 25% of the seeds exhibited this arrested phenotype, genetically consistent with them possessing the double homozygous dgat1 fad2 genotype. In contrast, double homozygous dgat1-1 fad3-2 mutant plants were viable. Seeds from these plants possessed higher levels of 18:2 while their fatty acid content was lower than dgat1 mutant controls. The results are consistent with a model where in the absence of DGAT1 activity, desaturation of fatty acids by FAD2 becomes essential to provide PUFA substrates for phospholipid:diacylglycerol acyltransferase (PDAT) to synthesize TAG. In a dgat1 fad2 mutant, seed development is aborted because TAG is unable to be synthesized by either DGAT1 or PDAT.

SELECTION OF CITATIONS
SEARCH DETAIL