Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
J Neurosci ; 43(10): 1692-1713, 2023 03 08.
Article in English | MEDLINE | ID: mdl-36717230

ABSTRACT

The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to MOR-expressing cells. After performing anatomic and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to study the involvement of NAc MOR-expressing cells in heroin self-administration in male and female rats. Using RNAscope, autoradiography, and FISH chain reaction (HCR-FISH), we found no differences in Oprm1 expression in NAc, dorsal striatum, and dorsal hippocampus, or MOR receptor density (except dorsal striatum) or function between Oprm1-Cre knock-in rats and wildtype littermates. HCR-FISH assay showed that iCre is highly coexpressed with Oprm1 (95%-98%). There were no genotype differences in pain responses, morphine analgesia and tolerance, heroin self-administration, and relapse-related behaviors. We used the Cre-dependent vector AAV1-EF1a-Flex-taCasp3-TEVP to lesion NAc MOR-expressing cells. We found that the lesions decreased acquisition of heroin self-administration in male Oprm1-Cre rats and had a stronger inhibitory effect on the effort to self-administer heroin in female Oprm1-Cre rats. The validation of an Oprm1-Cre knock-in rat enables new strategies for understanding the role of MOR-expressing cells in rat models of opioid addiction, pain-related behaviors, and other opioid-mediated functions. Our initial mechanistic study indicates that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in male and female rats.SIGNIFICANCE STATEMENT The brain µ-opioid receptor (MOR) is critical for the analgesic, rewarding, and addictive effects of opioid drugs. However, in rat models of opioid-related behaviors, the circuit mechanisms of MOR-expressing cells are less known because of a lack of genetic tools to selectively manipulate them. We introduce a CRISPR-based Oprm1-Cre knock-in transgenic rat that provides cell type-specific genetic access to brain MOR-expressing cells. After performing anatomical and behavioral validation experiments, we used the Oprm1-Cre knock-in rats to show that lesioning NAc MOR-expressing cells had different effects on heroin self-administration in males and females. The new Oprm1-Cre rats can be used to study the role of brain MOR-expressing cells in animal models of opioid addiction, pain-related behaviors, and other opioid-mediated functions.


Subject(s)
Heroin Dependence , Heroin , Rats , Male , Female , Animals , Heroin/pharmacology , Analgesics, Opioid/pharmacology , Nucleus Accumbens , Receptors, Opioid/metabolism , Rats, Transgenic , Receptors, Opioid, mu/genetics , Receptors, Opioid, mu/metabolism , Pain/metabolism
2.
J Neurochem ; 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38491746

ABSTRACT

Dysregulation of synaptic glutamate levels can lead to excitotoxicity such as that observed in stroke, traumatic brain injury, and epilepsy. The role of increased intracellular calcium (Ca2+ ) in the development of excitotoxicity is well established. However, less is known regarding the impact of glutamate on endoplasmic reticulum (ER)-Ca2+ -mediated processes such as proteostasis. To investigate this, we expressed a secreted ER Ca2+ modulated protein (SERCaMP) in primary cortical neurons to monitor exodosis, a phenomenon whereby ER calcium depletion causes the secretion of ER-resident proteins that perform essential functions to the ER and the cell. Activation of glutamatergic receptors (GluRs) led to an increase in SERCaMP secretion indicating that normally ER-resident proteins are being secreted in a manner consistent with ER Ca2+ depletion. Antagonism of ER Ca2+ channels attenuated the effects of glutamate and GluR agonists on SERCaMP release. We also demonstrate that endogenous proteins containing an ER retention/retrieval sequence (ERS) are secreted in response to GluR activation supporting that neuronal activation by glutamate promotes ER exodosis. Ectopic expression of KDEL receptors attenuated the secretion of ERS-containing proteins caused by GluR agonists. Taken together, our data indicate that excessive GluR activation causes disruption of neuronal proteostasis by triggering the secretion of ER-resident proteins through ER Ca2+ depletion and describes a new facet of excitotoxicity.

3.
Transgenic Res ; 32(3): 209-221, 2023 06.
Article in English | MEDLINE | ID: mdl-37133648

ABSTRACT

Maintenance of calcium homeostasis is important for proper endoplasmic reticulum (ER) function. When cellular stress conditions deplete the high concentration of calcium in the ER, ER-resident proteins are secreted into the extracellular space in a process called exodosis. Monitoring exodosis provides insight into changes in ER homeostasis and proteostasis resulting from cellular stress associated with ER calcium dysregulation. To monitor cell-type specific exodosis in the intact animal, we created a transgenic mouse line with a Gaussia luciferase (GLuc)-based, secreted ER calcium-modulated protein, SERCaMP, preceded by a LoxP-STOP-LoxP (LSL) sequence. The Cre-dependent LSL-SERCaMP mice were crossed with albumin (Alb)-Cre and dopamine transporter (DAT)-Cre mouse lines. GLuc-SERCaMP expression was characterized in mouse organs and extracellular fluids, and the secretion of GLuc-SERCaMP in response to cellular stress was monitored following pharmacological depletion of ER calcium. In LSL-SERCaMP × Alb-Cre mice, robust GLuc activity was observed only in the liver and blood, whereas in LSL-SERCaMP × DAT-Cre mice, GLuc activity was seen in midbrain dopaminergic neurons and tissue samples innervated by dopaminergic projections. After calcium depletion, we saw increased GLuc signal in the plasma and cerebrospinal fluid collected from the Alb-Cre and DAT-Cre crosses, respectively. This mouse model can be used to investigate the secretion of ER-resident proteins from specific cell and tissue types during disease pathogenesis and may aid in the identification of therapeutics and biomarkers of disease.


Subject(s)
Calcium , Proteostasis , Mice , Animals , Proteostasis/genetics , Calcium/metabolism , Liver/metabolism , Luciferases/metabolism , Endoplasmic Reticulum/genetics , Mice, Transgenic
4.
Int J Mol Sci ; 23(4)2022 Feb 10.
Article in English | MEDLINE | ID: mdl-35216090

ABSTRACT

Drugs of abuse can cause local and systemic hyperthermia, a known trigger of endoplasmic reticulum (ER) stress and the unfolded protein response (UPR). Another trigger of ER stress and UPR is ER calcium depletion, which causes ER exodosis, the secretion of ER-resident proteins. In rodent models, club drugs such as 3,4-methylenedioxymethamphetamine (MDMA, 'ecstasy') can create hyperthermic conditions in the brain and cause toxicity that is affected by the environmental temperature and the presence of other drugs, such as caffeine. In human studies, MDMA stimulated an acute, dose-dependent increase in core body temperature, but an examination of caffeine and MDMA in combination remains a topic for clinical research. Here we examine the secretion of ER-resident proteins and activation of the UPR under combined exposure to MDMA and caffeine in a cellular model of hyperthermia. We show that hyperthermia triggers the secretion of normally ER-resident proteins, and that this aberrant protein secretion is potentiated by the presence of MDMA, caffeine, or a combination of the two drugs. Hyperthermia activates the UPR but the addition of MDMA or caffeine does not alter the canonical UPR gene expression despite the drug effects on ER exodosis of UPR-related proteins. One exception was increased BiP/GRP78 mRNA levels in MDMA-treated cells exposed to hyperthermia. These findings suggest that club drug use under hyperthermic conditions exacerbates disruption of ER proteostasis, contributing to cellular toxicity.


Subject(s)
Caffeine/pharmacology , Endoplasmic Reticulum Stress/drug effects , Hyperthermia, Induced/adverse effects , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Animals , Body Temperature/drug effects , Cell Line , Cells, Cultured , Central Nervous System Stimulants/pharmacology , Female , Humans , Illicit Drugs/pharmacology , Male , Rats , Rats, Sprague-Dawley , Unfolded Protein Response/drug effects
5.
J Neurosci ; 40(44): 8463-8477, 2020 10 28.
Article in English | MEDLINE | ID: mdl-33051346

ABSTRACT

Relapse to drug use can be initiated by drug-associated cues. The intensity of cue-induced drug seeking in rodent models correlates with the induction of transient synaptic potentiation (t-SP) at glutamatergic synapses in the nucleus accumbens core (NAcore). Matrix metalloproteinases (MMPs) are inducible endopeptidases that degrade extracellular matrix (ECM) proteins, and reveal tripeptide Arginine-Glycine-Aspartate (RGD) domains that bind and signal through integrins. Integrins are heterodimeric receptors composed of αß subunits, and a primary signaling kinase is focal adhesion kinase (FAK). We previously showed that MMP activation is necessary for and potentiates cued reinstatement of cocaine seeking, and MMP-induced catalysis stimulates ß3-integrins to induce t-SP. Here, we determined whether ß3-integrin signaling through FAK and cofilin (actin depolymerization factor) is necessary to promote synaptic growth during t-SP. Using a small molecule inhibitor to prevent FAK activation, we blocked cued-induced cocaine reinstatement and increased spine head diameter (dh). Immunohistochemistry on NAcore labeled spines with ChR2-EYFP virus, showed increased immunoreactivity of phosphorylation of FAK (p-FAK) and p-cofilin in dendrites of reinstated animals compared with extinguished and yoked saline, and the p-FAK and cofilin depended on ß3-integrin signaling. Next, male and female transgenic rats were used to selectively label D1 or D2 neurons with ChR2-mCherry. We found that p-FAK was increased during drug seeking in both D1 and D2-medium spiny neurons (MSNs), but increased p-cofilin was observed only in D1-MSNs. These data indicate that ß3-integrin, FAK and cofilin constitute a signaling pathway downstream of MMP activation that is involved in promoting the transient synaptic enlargement in D1-MSNs induced during reinstated cocaine by drug-paired cues.SIGNIFICANCE STATEMENT Drug-associated cues precipitate relapse, which is correlated with transient synaptic enlargement in the accumbens core. We showed that cocaine cue-induced synaptic enlargement depends on matrix metalloprotease signaling in the extracellular matrix (ECM) through ß3-integrin to activate focal adhesion kinase (FAK) and phosphorylate the actin binding protein cofilin. The nucleus accumbens core (NAcore) contains two predominate neuronal subtypes selectively expressing either D1-dopamine or D2-dopamine receptors. We used transgenic rats to study each cell type and found that cue-induced signaling through cofilin phosphorylation occurred only in D1-expressing neurons. Thus, cocaine-paired cues initiate cocaine reinstatement and synaptic enlargement through a signaling cascade selectively in D1-expressing neurons requiring ECM stimulation of ß3-integrin-mediated phosphorylation of FAK (p-FAK) and cofilin.


Subject(s)
Actin Depolymerizing Factors/metabolism , Cocaine-Related Disorders/physiopathology , Dopaminergic Neurons/metabolism , Focal Adhesion Kinase 1/metabolism , Integrin beta3/metabolism , Receptors, Dopamine D1/metabolism , Animals , Cocaine-Related Disorders/psychology , Cues , Dendritic Spines/drug effects , Dendritic Spines/ultrastructure , Drug-Seeking Behavior , Enzyme Activation , Humans , Male , Rats , Rats, Long-Evans , Rats, Sprague-Dawley , Rats, Transgenic , Recurrence , Synapses
6.
J Neurochem ; 159(5): 867-886, 2021 12.
Article in English | MEDLINE | ID: mdl-34569615

ABSTRACT

Glucagon-like peptide-1 (GLP-1) is best known for its insulinotropic action following food intake. Its metabolite, GLP-1 (9-36), was assumed biologically inactive because of low GLP-1 receptor (GLP-1R) affinity and non-insulinotropic properties; however, recent studies contradict this assumption. Increased use of FDA approved GLP-1 analogues for treating metabolic disorders and neurodegenerative diseases raises interest in GLP-1 (9-36)'s biological role. We use human SH-SY5Y neuroblastoma cells and a GLP-1R over-expressing variety (#9), in both undifferentiated and differentiated states, to evaluate the neurotrophic/neuroprotective effects of GLP-1 (9-36) against toxic glutamate exposure and other oxidative stress models (via the MTS, LDH or ROS assays). In addition, we examine GLP-1 (9-36)'s signaling pathways, including cyclic-adenosine monophosphate (cAMP), protein kinase-A (PKA), and 5' adenosine monophosphate-activated protein kinase (AMPK) via the use of ELISA, pharmacological inhibitors, or GLP-1R antagonist. Human HMC3 and mouse IMG microglial cell lines were used to study the anti-inflammatory effects of GLP-1 (9-36) against lipopolysaccharide (LPS) (via ELISA). Finally, we applied GLP-1 (9-36) to primary dissociation cultures challenged with α-synuclein or amyloid-ß and assessed survival and morphology via immunochemistry. We demonstrate evidence of GLP-1R, cAMP, PKA, and AMPK-mediated neurotrophic and neuroprotective effects of GLP-1 (9-36). The metabolite significantly reduced IL-6 and TNF-α levels in HMC3 and IMG microglial cells, respectively. Lastly, we show mild but significant effects of GLP-1 (9-36) in primary neuron cultures challenged with α-synuclein or amyloid-ß. These studies enhance understanding of GLP-1 (9-36)'s effects on the nervous system and its potential as a primary or complementary treatment in pathological contexts.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Glucagon-Like Peptide 1/analogs & derivatives , Microglia/drug effects , Microglia/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/pharmacology , Animals , Anti-Inflammatory Agents/therapeutic use , Cell Line, Transformed , Cell Line, Tumor , Cells, Cultured , Coculture Techniques , Dose-Response Relationship, Drug , Female , Glucagon-Like Peptide 1/pharmacology , Glucagon-Like Peptide 1/therapeutic use , Humans , Mice , Microglia/pathology , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/pathology , Neuroprotective Agents/therapeutic use , Pregnancy , Rats , Rats, Sprague-Dawley
7.
J Biomed Sci ; 28(1): 87, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34923968

ABSTRACT

BACKGROUND: Craving for alcohol, in other words powerful desire to drink after withdrawal, is an important contributor to the development and maintenance of alcoholism. Here, we studied the role of GDNF (glial cell line-derived neurotrophic factor) and BDNF (brain-derived neurotrophic factor) on alcohol-seeking behavior in group-housed female mice. METHODS: We modeled alcohol-seeking behavior in C57Bl/6J female mice. The behavioral experiments in group-housed female mice were performed in an automated IntelliCage system. We conducted RT-qPCR analysis of Gdnf, Bdnf, Manf and Cdnf expression in different areas of the female mouse brain after alcohol drinking conditioning. We injected an adeno-associated virus (AAV) vector expressing human GDNF or BDNF in mouse nucleus accumbens (NAc) after ten days of alcohol drinking conditioning and assessed alcohol-seeking behavior. Behavioral data were analyzed by two-way repeated-measures ANOVA, and statistically significant effects were followed by Bonferroni's post hoc test. The student's t-test was used to analyze qPCR data. RESULTS: The RT-qPCR data showed that Gdnf mRNA level in NAc was more than four times higher (p < 0.0001) in the mice from the sweetened alcohol group compared to the water group. Our data showed a more than a two-fold decrease in Manf mRNA (p = 0.04) and Cdnf mRNA (p = 0.02) levels in the hippocampus and Manf mRNA in the VTA (p = 0.04) after alcohol consumption. Two-fold endogenous overexpression of Gdnf mRNA and lack of CDNF did not affect alcohol-seeking behavior. The AVV-GDNF overexpression in nucleus accumbens suppressed alcohol-seeking behavior while overexpression of BDNF did not. CONCLUSIONS: The effect of increased endogenous Gdnf mRNA level in female mice upon alcohol drinking has remained unknown. Our data suggest that an increase in endogenous GDNF expression upon alcohol drinking occurs in response to the activation of another mesolimbic reward pathway participant.


Subject(s)
Alcohol Drinking/genetics , Craving , Gene Expression Regulation , Glial Cell Line-Derived Neurotrophic Factor/genetics , Nucleus Accumbens/metabolism , Animals , Female , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Mice , Mice, Inbred C57BL , Social Behavior
8.
Int J Mol Sci ; 22(11)2021 May 21.
Article in English | MEDLINE | ID: mdl-34063979

ABSTRACT

The KDEL receptor retrieval pathway is essential for maintaining resident proteins in the endoplasmic reticulum (ER) lumen. ER resident proteins serve a variety of functions, including protein folding and maturation. Perturbations to the lumenal ER microenvironment, such as calcium depletion, can cause protein misfolding and activation of the unfolded protein response (UPR). Additionally, ER resident proteins are secreted from the cell by overwhelming the KDEL receptor retrieval pathway. Recent data show that KDEL receptors are also activated during the UPR through the IRE1/XBP1 signaling pathway as an adaptive response to cellular stress set forth to reduce the loss of ER resident proteins. This review will discuss the emerging connection between UPR activation and KDEL receptors as it pertains to ER proteostasis and disease states.


Subject(s)
Receptors, Peptide/metabolism , Unfolded Protein Response/physiology , Animals , Humans , Proteostasis/physiology , Signal Transduction/physiology
9.
J Neurosci ; 39(11): 2041-2051, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30622165

ABSTRACT

Outputs from the nucleus accumbens (NAc) include projections to the ventral pallidum and the ventral tegmental area and subtantia nigra in the ventral mesencephalon. The medium spiny neurons (MSN) that give rise to these pathways are GABAergic and consist of two populations of equal number that are segregated by differentially expressed proteins, including D1- and D2-dopamine receptors. Afferents to the ventral pallidum arise from both D1- and D2-MSNs, whereas the ventral mesencephalon is selectively innervated by D1-MSN. To determine the extent of collateralization of D1-MSN to these axon terminal fields we used retrograde labeling in transgenic mice expressing tdTomato selectively in D1-MSN, and found that a large majority of D1-MSN in either the shell or core subcompartments of the accumbens collateralized to both output structures. Approximately 70% of D1-MSNs projecting to the ventral pallidum collateralized to the ventral mesencephalon, whereas >90% of mesencephalic D1-MSN afferents collateralized to the ventral pallidum. In contrast, <10% of dorsal striatal D1-MSNs collateralized to both the globus pallidus and ventral mesencephalon. D1-MSN activation is required for conditioned cues to induce cocaine seeking. To determine which D1-MSN projection mediates cued cocaine seeking, we selectively transfected D1-MSNs in transgenic rats with an inhibitory Gi-coupled DREADD. Activation of the transfected Gi-DREADD with clozapine-N-oxide administered into the ventral pallidum, but not into the ventral mesencephalon, blocked cue-induced cocaine seeking. These data show that, although accumbens D1-MSNs largely collateralize to both the ventral pallidum and ventral mesencephalon, only D1-MSN innervation of the ventral pallidum is necessary for cue-induced cocaine seeking.SIGNIFICANCE STATEMENT Activity in D1 dopamine receptor-expressing neurons in the NAc is required for rodents to respond to cocaine-conditioned cues and relapse to drug seeking behaviors. The D1-expressing neurons project to both the ventral pallidum and ventral mesencephalon, and we found that a majority of the neurons that innervate the ventral pallidum also collateralize to the ventral mesencephalon. However, despite innervating both structures, only D1 innervation of the ventral pallidum mediates cue-induced cocaine seeking.


Subject(s)
Basal Forebrain/physiology , Cocaine/administration & dosage , Drug-Seeking Behavior/physiology , Neurons/physiology , Nucleus Accumbens/physiology , Receptors, Dopamine D1/physiology , Animals , Basal Forebrain/cytology , Conditioning, Classical , Female , Male , Mice, Inbred C57BL , Mice, Transgenic , Neural Pathways/cytology , Neural Pathways/physiology , Neurons/cytology , Nucleus Accumbens/cytology , Rats, Long-Evans , Rats, Transgenic
10.
Cell Tissue Res ; 382(1): 83-100, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32845431

ABSTRACT

Mesencephalic astrocyte-derived neurotrophic factor (MANF) and cerebral dopamine neurotrophic factor (CDNF) are endoplasmic reticulum (ER) luminal proteins that confer trophic activities in a wide range of tissues under diverse pathological conditions. Despite initially being classified as neurotrophic factors, neither protein structurally nor functionally resembles bona fide neurotrophic factors. Their highly homologous structures comprise a unique globular, saposin-like domain within the N-terminus joined by a flexible linker to a C-terminus containing a SAP-like domain, CXXC motif and an ER retention sequence. Neurotrophic factors exert effects by binding to cognate receptors in the plasma membrane; however, no cell surface receptors have been identified for MANF and CDNF. Both can act as unfolded protein response (UPR) genes that modulate the UPR and inflammatory processes. The trophic activity of MANF and CDNF extends beyond the central nervous system with MANF being crucial for the development of pancreatic ß cells and both have trophic effects in a variety of diseases related to the liver, heart, skeletal tissue, kidney and peripheral nervous system. In this article, the unique features of MANF and CDNF, such as their structure and mechanisms of action related to ER stress and inflammation, will be reviewed. Recently identified interactions with lipids and membrane trafficking will also be described. Lastly, their function and therapeutic potential in different diseases including a recent clinical trial using CDNF to treat Parkinson's disease will be discussed. Collectively, this review will highlight MANF and CDNF as broad-acting trophic factors that regulate functions of the endoplasmic reticulum.


Subject(s)
Endoplasmic Reticulum/metabolism , Nerve Growth Factors/genetics , Protein Transport/physiology , Animals , Humans
11.
Mol Ther ; 27(1): 151-163, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30389355

ABSTRACT

Investigators have utilized the CRISPR/Cas9 gene-editing system to specifically target well-conserved regions of HIV, leading to decreased infectivity and pathogenesis in vitro and ex vivo. We utilized a specialized extracellular vesicle termed a "gesicle" to efficiently, yet transiently, deliver Cas9 in a ribonucleoprotein form targeting the HIV long terminal repeat (LTR). Gesicles are produced through expression of vesicular stomatitis virus glycoprotein and package protein as their cargo, thus bypassing the need for transgene delivery, and allowing finer control of Cas9 expression. Using both NanoSight particle and western blot analysis, we verified production of Cas9-containing gesicles by HEK293FT cells. Application of gesicles to CHME-5 microglia resulted in rapid but transient transfer of Cas9 by western blot, which is present at 1 hr, but is undetectable by 24 hr post-treatment. Gesicle delivery of Cas9 protein preloaded with guide RNA targeting the HIV LTR to HIV-NanoLuc CHME-5 cells generated mutations within the LTR region and copy number loss. Finally, we demonstrated that this treatment resulted in reduced proviral activity under basal conditions and after stimulation with pro-inflammatory factors lipopolysaccharide (LPS) or tumor necrosis factor alpha (TNF-α). These data suggest that gesicles are a viable alternative approach to deliver CRISPR/Cas9 technology.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems/physiology , Gene Editing/methods , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , CRISPR-Associated Protein 9/genetics , CRISPR-Cas Systems/drug effects , CRISPR-Cas Systems/genetics , HEK293 Cells , HIV Long Terminal Repeat/genetics , HIV Long Terminal Repeat/physiology , Heterogeneous-Nuclear Ribonucleoproteins/genetics , Humans , Lipopolysaccharides/pharmacology , Mutation/genetics , Proviruses/genetics , Proviruses/metabolism , Tumor Necrosis Factor-alpha/metabolism , Vesiculovirus/genetics , Vesiculovirus/metabolism
12.
J Neurosci Res ; 97(3): 346-361, 2019 03.
Article in English | MEDLINE | ID: mdl-30548446

ABSTRACT

Adeno-associated virus (AAV) vector-mediated delivery of human α-synuclein (α-syn) gene in rat substantia nigra (SN) results in increased expression of α-syn protein in the SN and striatum which can progressively degenerate dopaminergic neurons. Therefore, this model is thought to recapitulate the neurodegeneration in Parkinson's disease. Here, using AAV to deliver α-syn above the SN in male and female rats resulted in clear expression of human α-syn in the SN and striatum. The protein was associated with moderate behavioral deficits and some loss of tyrosine hydroxylase (TH) in the nigrostriatal areas. However, the immunohistochemistry results were highly variable and showed little to no correlation with behavior and the amount of α-syn present. Expression of green fluorescent protein (GFP) was used as a control to monitor gene delivery and expression efficacy. AAV-GFP resulted in a similar or greater TH loss compared to AAV-α-syn and therefore an additional vector that does not express a protein was tested. Vectors with double-floxed inverse open reading frame (DIO ORF) encoding fluorescent proteins that generate RNA that is not translated also resulted in TH downregulation in the SN but showed no significant behavioral deficits. These results demonstrate that although expression of wild-type human α-syn can cause neurodegeneration, the variability and lack of correlation with outcome measures are drawbacks with the model. Furthermore, design and control selection should be considered carefully because of conflicting conclusions due to AAV downregulation of TH, and we recommend caution with having highly regulated TH as the only marker for the dopamine system.


Subject(s)
Substantia Nigra/metabolism , Tyrosine 3-Monooxygenase/metabolism , alpha-Synuclein/metabolism , Animals , Dependovirus , Dopamine/metabolism , Down-Regulation , Female , Humans , Male , Models, Animal , Parkinson Disease/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
13.
J Neurochem ; 146(5): 526-539, 2018 09.
Article in English | MEDLINE | ID: mdl-29772059

ABSTRACT

The chemokine CCL5 prevents neuronal cell death mediated both by amyloid ß, as well as the human immunodeficiency virus viral proteins gp120 and Tat. Because CCL5 binds to CCR5, CCR3 and/or CCR1 receptors, it remains unclear which of these receptors plays a role in neuroprotection. Indeed, CCL5 also has neuroprotective activity in cells lacking these receptors. CCL5 may bind to a G-protein-coupled receptor 75 (GPR75), which encodes for a 540 amino-acid orphan receptor of the Gqα family. In this study, we have used SH-SY5Y human neuroblastoma cells to characterize whether CCL5 could activate a Gq signaling through GPR75. Both qPCR and flow cytometry show that these cells express GPR75 but do not express CCR5, CCR3 or CCR1 receptors. SY-SY5Y cells were then used to examine CCL5-mediated signaling. We report that CCL5 promotes a time- and concentration-dependent phosphorylation of protein kinase B (AKT), glycogen synthase kinase 3ß, and extracellular signal-regulated kinase (ERK) 1/2. Specific antagonists of CCR5, CCR3, and CCR1 did not prevent CCL5 from increasing phosphorylated AKT or ERK. Moreover, CCL5 promotes a time-dependent internalization of GPR75. Lastly, knocking down GPR75 expression by a CRISPR-Cas9 approach inhibited the ability of CCL5 to activate pERK in SH-SY5Y cells. Therefore, we propose that GPR75 is a novel receptor for CCL5 that could explain some of the pharmacological action of this chemokine. These findings may help in the development of small molecule GPR75 agonists that mimic CCL5. Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/.


Subject(s)
Chemokine CCL5/metabolism , Gene Expression Regulation/physiology , Receptors, G-Protein-Coupled/metabolism , Signal Transduction/physiology , Animals , Antineoplastic Agents/pharmacology , CRISPR-Associated Protein 9/genetics , CRISPR-Associated Protein 9/metabolism , Cells, Cultured , Cerebral Cortex/cytology , Chemokine CCL5/genetics , Chemokine CCL5/pharmacology , Embryo, Mammalian , Enzyme Inhibitors/pharmacology , Humans , Mutagenesis/genetics , Neuroblastoma/pathology , Neurons/drug effects , Neurons/metabolism , Pertussis Toxin/pharmacology , Protein Transport/drug effects , Protein Transport/genetics , Rats , Receptors, G-Protein-Coupled/genetics , Signal Transduction/drug effects , T-Lymphocytes , Tretinoin/pharmacology
14.
Biomarkers ; 23(8): 756-765, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30095301

ABSTRACT

CONTEXT: Endoplasmic reticulum (ER) calcium depletion is associated with diverse diseases, including cardiac, hepatic, and neurologic diseases. OBJECTIVE: The aim of the present study was to identify and characterize an endogenous protein that could be used to monitor ER calcium depletion comparably to a previously described exogenous reporter protein. MATERIALS AND METHODS: The use of a selective esterase-fluorescein diester pair allowed for carboxylesterase activity in extracellular fluid to be measured using a fluorescent readout. Cell culture media from three different cell lines, rat plasma, and human serum all possess quantifiable amounts of esterase activity. RESULTS: Fluorescence produced by the interaction of carboxylesterases with a fluorescein diester substrate tracks with pharmacological and physiological inducers of ER calcium depletion. The fluorescence measured for in vitro and in vivo samples were consistent with ER calcium depletion being the trigger for increased esterase activity. DISCUSSION: Decreased luminal ER calcium causes ER resident esterases to be released from the cell, and, when assessed concurrently with other disease biomarkers, these esterases may provide insight into the role of ER calcium homeostasis in human diseases. CONCLUSION: Our results indicate that carboxylesterases are putative markers of ER calcium dysfunction.


Subject(s)
Calcium/deficiency , Carboxylic Ester Hydrolases/analysis , Culture Media, Conditioned/chemistry , Endoplasmic Reticulum/chemistry , Animals , Cell Line , Esterases/analysis , Fluorescent Dyes , Fluorometry/methods , Humans , Rats
15.
J Neurosci ; 36(11): 3281-94, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26985037

ABSTRACT

In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive alcohol use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol drinking. We recently developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and then test for relapse to alcohol seeking in Contexts A and B without alcohol or shock. Here, we studied the role of projections to nucleus accumbens (NAc) shell from ventral subiculum (vSub), basolateral amygdala, paraventricular thalamus, and ventral medial prefrontal cortex in context-induced relapse after punishment-imposed abstinence. First, we measured double-labeling of the neuronal activity marker Fos with the retrograde tracer cholera toxin subunit B (injected in NAc shell) and demonstrated that context-induced relapse is associated with selective activation of the vSub→NAc shell projection. Next, we reversibly inactivated the vSub with GABA receptor agonists (muscimol+baclofen) before the context-induced relapse tests and provided evidence for a causal role of vSub in this relapse. Finally, we used a dual-virus approach to restrict expression of the inhibitory κ opioid-receptor based DREADD (KORD) in vSub→NAc shell projection neurons. We found that systemic injections of the KORD agonist salvinorin B, which selectively inhibits KORD-expressing neurons, decreased context-induced relapse to alcohol seeking. Our results demonstrate a critical role of vSub in context-induced relapse after punishment-imposed abstinence and further suggest a role of the vSub→NAc projection in this relapse. SIGNIFICANCE STATEMENT: In many human alcoholics, abstinence is self-imposed because of the negative consequences of excessive use, and relapse is often triggered by exposure to environmental contexts associated with prior alcohol use. Until recently, an animal model of this human condition did not exist. We developed a rat model of this human condition in which we train alcohol-preferring P rats to self-administer alcohol in one context (A), punish the alcohol-reinforced responding in a different context (B), and test for relapse to alcohol seeking in Contexts A and B. Here, we used neuroanatomical, neuropharmacological, and chemogenetic methods to demonstrate a role of ventral subiculum and potentially its projections to nucleus accumbens in context-induced relapse after punishment-imposed abstinence.


Subject(s)
Alcohol Abstinence/psychology , Alcohol Drinking/psychology , Conditioning, Operant/physiology , Extinction, Psychological/physiology , Nucleus Accumbens/physiopathology , Punishment , Alcohol Drinking/physiopathology , Animals , Cholera Toxin/metabolism , Conditioning, Operant/drug effects , Diterpenes/pharmacology , Diterpenes, Clerodane , Ethanol/administration & dosage , Extinction, Psychological/drug effects , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Male , Neurons/metabolism , Nucleus Accumbens/drug effects , Nucleus Accumbens/metabolism , Nucleus Accumbens/pathology , Oncogene Proteins v-fos/genetics , Oncogene Proteins v-fos/metabolism , Rats , Receptors, Opioid, kappa/metabolism , Recurrence , Reinforcement, Psychology , Self Administration , Transduction, Genetic
16.
Neurobiol Dis ; 97(Pt B): 189-200, 2017 01.
Article in English | MEDLINE | ID: mdl-27189755

ABSTRACT

Drug addiction is a chronic brain disease and drugs of abuse cause long lasting neuroadaptations. Addiction is characterized by the loss of control over drug use despite harmful consequences, and high rates of relapse even after long periods of abstinence. Neurotrophic factors (NTFs) are well known for their actions on neuronal survival in the peripheral nervous system. Moreover, NTFs have been shown to be involved in synaptic plasticity in the brain. Brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF) are two of the most studied NTFs and both of them have been reported to increase craving when administered into the mesocorticolimbic dopaminergic system after drug self-administration. Here we review recent data on BDNF and GDNF functions in addiction-related behavior and discuss them in relation to previous findings. Finally, we give an insight into how new technologies could aid in further elucidating the role of these factors in drug addiction.


Subject(s)
Nerve Growth Factors/metabolism , Substance-Related Disorders/metabolism , Animals , Humans
17.
J Hepatol ; 67(5): 1009-1017, 2017 11.
Article in English | MEDLINE | ID: mdl-28596111

ABSTRACT

BACKGROUND & AIMS: Disruption to endoplasmic reticulum (ER) calcium homeostasis has been implicated in obesity, however, the ability to longitudinally monitor ER calcium fluctuations has been challenging with prior methodologies. We recently described the development of a Gaussia luciferase (GLuc)-based reporter protein responsive to ER calcium depletion (GLuc-SERCaMP) and investigated the effect of a high fat diet on ER calcium homeostasis. METHODS: A GLuc-based reporter cell line was treated with palmitate, a free fatty acid. Rats intrahepatically injected with GLuc-SERCaMP reporter were fed a cafeteria diet or high fat diet. The liver and plasma were examined for established markers of steatosis and compared to plasma levels of SERCaMP activity. RESULTS: Palmitate induced GLuc-SERCaMP release in vitro, indicating ER calcium depletion. Consumption of a cafeteria diet or high fat pellets correlated with alterations to hepatic ER calcium homeostasis in rats, shown by increased GLuc-SERCaMP release. Access to ad lib high fat pellets also led to a corresponding decrease in microsomal calcium ATPase activity and an increase in markers of hepatic steatosis. In addition to GLuc-SERCaMP, we have also identified endogenous proteins (endogenous SERCaMPs) with a similar response to ER calcium depletion. We demonstrated the release of an endogenous SERCaMP, thought to be a liver esterase, during access to a high fat diet. Attenuation of both GLuc-SERCaMP and endogenous SERCaMP was observed during dantrolene administration. CONCLUSIONS: Here we describe the use of a reporter for in vitro and in vivo models of high fat diet. Our results support the theory that dietary fat intake correlates with a decrease in ER calcium levels in the liver and suggest a high fat diet alters the ER proteome. Lay summary: ER calcium dysregulation was observed in rats fed a cafeteria diet or high fat pellets, with fluctuations in sensor release correlating with fat intake. Attenuation of sensor release, as well as food intake was observed during administration of dantrolene, a drug that stabilizes ER calcium. The study describes a novel technique for liver research and provides insight into cellular processes that may contribute to the pathogenesis of obesity and fatty liver disease.


Subject(s)
Calcium , Diet, High-Fat/adverse effects , Endoplasmic Reticulum , Fatty Liver , Obesity , Animals , Calcium/analysis , Calcium/metabolism , Disease Models, Animal , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum/pathology , Fatty Liver/etiology , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Male , Obesity/metabolism , Obesity/pathology , Rats
18.
Cell Mol Neurobiol ; 37(8): 1487-1499, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28260198

ABSTRACT

Microparticles have potential as neuron-specific delivery platforms and devices with many applications in neuroscience, pharmacology, and biomedicine. To date, most literature suggests that neurons are not phagocytic cells capable of internalizing microparticles larger than 0.5 µm. We report that neurons transport fluorescently labeled silica microspheres with diameters of 1-2 µm into neurons in vitro and in rat brain without having overt effects on cell viability. Using flow cytometry, fluorescence-activated cell sorting, and confocal and electron microscopy, we first found that SH-SY5Y human neuroblastoma cells internalized 1-µm silicon microspheres with surface charges of -70 mV (hydroxyl and carboxyl), -30 mV (amino), and +40 mV (ammonio). Uptake was rapid, within 2-4 h, and did not affect cell viability 48 h later. Flow cytometry assays indicate that SH-SY5Y cells internalize 1- and 1.5-µm microspheres at the same rate over a 24-h incubation period. Electron microscopy confirms that SH-SY5Y cells internalize 1-, 1.5-, and 2-µm microspheres. Confocal microscopy demonstrated that primary cortical neurons also internalized 1-, 1.5-, and 2-µm amino microspheres within 4 h. Finally, we injected 1-µm amino microspheres into rat striatum and found microspheres inside neurons. Overall, neurons can internalize microspheres up to 2 µm in diameter with a range of surface chemical groups and charges. These findings allow a host of neuroscience and neuroengineering applications including intracellular microdevices within neurons.


Subject(s)
Endocytosis/physiology , Microspheres , Neurons/metabolism , Silicon Dioxide/metabolism , Animals , Cell Line, Tumor , Cells, Cultured , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Cerebral Cortex/ultrastructure , Endocytosis/drug effects , Humans , Neurons/drug effects , Neurons/ultrastructure , Rats , Rats, Long-Evans , Silicon Dioxide/pharmacology
19.
Transgenic Res ; 26(4): 477-489, 2017 08.
Article in English | MEDLINE | ID: mdl-28608322

ABSTRACT

Long Evans rat strains are applied as research models in a broad spectrum of biomedical fields (>15,800 citations, NCBI PubMed). Here, we report an approach to genetically modify the Long Evans rat germline in donor spermatogonial stem cells. Long Evans rat spermatogonial lines were derived from freshly isolated laminin-binding spermatogonia. Laminin-binding spermatogonia were cultured over multiple passages on fibroblast feeder layers in serum-free culture medium containing GDNF and FGF2. Long Evans rat spermatogonial lines were genetically modified by transposon transduction to express a germline, tdTomato reporter gene. Donor rat spermatogonial lines robustly regenerated spermatogenesis after transplantation into testes of busulfan-treated, allogenic, Long Evans rats. Donor-derived spermatogenesis largely restored testis size in the chemically sterilized, recipient Long Evans rats. Recipient Long Evans rats stably transmitted the tdTomato germline marker to subsequent generations. Overall, Long Evans rat spermatogonial lines provided effective donor germline vectors for genetically modifying Long Evans rats.


Subject(s)
Rats, Transgenic/genetics , Spermatogenesis/genetics , Stem Cells/cytology , Testis/growth & development , Animals , DNA Transposable Elements/genetics , Genes, Reporter/genetics , Germ Cells/growth & development , Laminin/genetics , Solanum lycopersicum/genetics , Male , Rats , Rats, Long-Evans/genetics , Rats, Transgenic/growth & development , Spermatogonia/growth & development , Testis/cytology
20.
Proc Natl Acad Sci U S A ; 111(32): 11876-81, 2014 Aug 12.
Article in English | MEDLINE | ID: mdl-25071172

ABSTRACT

Prolyl endopeptidase (PREP) has been implicated in neuronal functions. Here we report that hypothalamic PREP is predominantly expressed in the ventromedial nucleus (VMH), where it regulates glucose-induced neuronal activation. PREP knockdown mice (Prep(gt/gt)) exhibited glucose intolerance, decreased fasting insulin, increased fasting glucagon levels, and reduced glucose-induced insulin secretion compared with wild-type controls. Consistent with this, central infusion of a specific PREP inhibitor, S17092, impaired glucose tolerance and decreased insulin levels in wild-type mice. Arguing further for a central mode of action of PREP, isolated pancreatic islets showed no difference in glucose-induced insulin release between Prep(gt/gt) and wild-type mice. Furthermore, hyperinsulinemic euglycemic clamp studies showed no difference between Prep(gt/gt) and wild-type control mice. Central PREP regulation of insulin and glucagon secretion appears to be mediated by the autonomic nervous system because Prep(gt/gt) mice have elevated sympathetic outflow and norepinephrine levels in the pancreas, and propranolol treatment reversed glucose intolerance in these mice. Finally, re-expression of PREP by bilateral VMH injection of adeno-associated virus-PREP reversed the glucose-intolerant phenotype of the Prep(gt/gt) mice. Taken together, our results unmask a previously unknown player in central regulation of glucose metabolism and pancreatic function.


Subject(s)
Glucagon/metabolism , Hypothalamus/enzymology , Insulin/metabolism , Serine Endopeptidases/metabolism , Animals , Blood Glucose/metabolism , Gene Expression , Gene Knockdown Techniques , Glucose Clamp Technique , Glucose Intolerance/enzymology , Glucose Intolerance/etiology , Hypothalamus/physiology , Indoles/pharmacology , Insulin Secretion , Ion Channels/genetics , Male , Mice , Mice, Transgenic , Mitochondrial Proteins/genetics , Pancreas/metabolism , Phosphorylation , Prolyl Oligopeptidases , Receptor, Insulin/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Serine Proteinase Inhibitors/pharmacology , Thiazolidines/pharmacology , Uncoupling Protein 1 , Ventromedial Hypothalamic Nucleus/enzymology , Ventromedial Hypothalamic Nucleus/physiology
SELECTION OF CITATIONS
SEARCH DETAIL