Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Hematol Oncol ; 14(1): 170, 2021 10 16.
Article in English | MEDLINE | ID: mdl-34656143

ABSTRACT

BACKGROUND: Lineage plasticity, the ability to transdifferentiate among distinct phenotypic identities, facilitates therapeutic resistance in cancer. In lung adenocarcinomas (LUADs), this phenomenon includes small cell and squamous cell (LUSC) histologic transformation in the context of acquired resistance to targeted inhibition of driver mutations. LUAD-to-LUSC transdifferentiation, occurring in up to 9% of EGFR-mutant patients relapsed on osimertinib, is associated with notably poor prognosis. We hypothesized that multi-parameter profiling of the components of mixed histology (LUAD/LUSC) tumors could provide insight into factors licensing lineage plasticity between these histologies. METHODS: We performed genomic, epigenomics, transcriptomics and protein analyses of microdissected LUAD and LUSC components from mixed histology tumors, pre-/post-transformation tumors and reference non-transformed LUAD and LUSC samples. We validated our findings through genetic manipulation of preclinical models in vitro and in vivo and performed patient-derived xenograft (PDX) treatments to validate potential therapeutic targets in a LUAD PDX model acquiring LUSC features after osimertinib treatment. RESULTS: Our data suggest that LUSC transdifferentiation is primarily driven by transcriptional reprogramming rather than mutational events. We observed consistent relative upregulation of PI3K/AKT, MYC and PRC2 pathway genes. Concurrent activation of PI3K/AKT and MYC induced squamous features in EGFR-mutant LUAD preclinical models. Pharmacologic inhibition of EZH1/2 in combination with osimertinib prevented relapse with squamous-features in an EGFR-mutant patient-derived xenograft model, and inhibition of EZH1/2 or PI3K/AKT signaling re-sensitized resistant squamous-like tumors to osimertinib. CONCLUSIONS: Our findings provide the first comprehensive molecular characterization of LUSC transdifferentiation, suggesting putative drivers and potential therapeutic targets to constrain or prevent lineage plasticity.


Subject(s)
Adenocarcinoma of Lung/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Squamous Cell/pathology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/metabolism , Animals , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Cell Transdifferentiation , Humans , Mice, Inbred NOD , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-myc/genetics , Signal Transduction , Transcriptome
2.
Genome Med ; 13(1): 96, 2021 05 31.
Article in English | MEDLINE | ID: mdl-34059130

ABSTRACT

BACKGROUND: Cell-free DNA (cfDNA) profiling is increasingly used to guide cancer care, yet mutations are not always identified. The ability to detect somatic mutations in plasma depends on both assay sensitivity and the fraction of circulating DNA in plasma that is tumor-derived (i.e., cfDNA tumor fraction). We hypothesized that cfDNA tumor fraction could inform the interpretation of negative cfDNA results and guide the choice of subsequent assays of greater genomic breadth or depth. METHODS: Plasma samples collected from 118 metastatic cancer patients were analyzed with cf-IMPACT, a modified version of the FDA-authorized MSK-IMPACT tumor test that can detect genomic alterations in 410 cancer-associated genes. Shallow whole genome sequencing (sWGS) was also performed in the same samples to estimate cfDNA tumor fraction based on genome-wide copy number alterations using z-score statistics. Plasma samples with no somatic alterations detected by cf-IMPACT were triaged based on sWGS-estimated tumor fraction for analysis with either a less comprehensive but more sensitive assay (MSK-ACCESS) or broader whole exome sequencing (WES). RESULTS: cfDNA profiling using cf-IMPACT identified somatic mutations in 55/76 (72%) patients for whom MSK-IMPACT tumor profiling data were available. A significantly higher concordance of mutational profiles and tumor mutational burden (TMB) was observed between plasma and tumor profiling for plasma samples with a high tumor fraction (z-score≥5). In the 42 patients from whom tumor data was not available, cf-IMPACT identified mutations in 16/42 (38%). In total, cf-IMPACT analysis of plasma revealed mutations in 71/118 (60%) patients, with clinically actionable alterations identified in 30 (25%), including therapeutic targets of FDA-approved drugs. Of the 47 samples without alterations detected and low tumor fraction (z-score<5), 29 had sufficient material to be re-analyzed using a less comprehensive but more sensitive assay, MSK-ACCESS, which revealed somatic mutations in 14/29 (48%). Conversely, 5 patients without alterations detected by cf-IMPACT and with high tumor fraction (z-score≥5) were analyzed by WES, which identified mutational signatures and alterations in potential oncogenic drivers not covered by the cf-IMPACT panel. Overall, we identified mutations in 90/118 (76%) patients in the entire cohort using the three complementary plasma profiling approaches. CONCLUSIONS: cfDNA tumor fraction can inform the interpretation of negative cfDNA results and guide the selection of subsequent sequencing platforms that are most likely to identify clinically-relevant genomic alterations.


Subject(s)
Biomarkers, Tumor , Circulating Tumor DNA , Liquid Biopsy/methods , Neoplasms/diagnosis , Neoplasms/genetics , DNA Copy Number Variations , Genomics/methods , Humans , Mutation , ROC Curve , Exome Sequencing , Whole Genome Sequencing
3.
Cancer Discov ; 11(12): 3028-3047, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34155000

ABSTRACT

Lineage plasticity is implicated in treatment resistance in multiple cancers. In lung adenocarcinomas (LUAD) amenable to targeted therapy, transformation to small cell lung cancer (SCLC) is a recognized resistance mechanism. Defining molecular mechanisms of neuroendocrine (NE) transformation in lung cancer has been limited by a paucity of pre/posttransformation clinical samples. Detailed genomic, epigenomic, transcriptomic, and protein characterization of combined LUAD/SCLC tumors, as well as pre/posttransformation samples, supports that NE transformation is primarily driven by transcriptional reprogramming rather than mutational events. We identify genomic contexts in which NE transformation is favored, including frequent loss of the 3p chromosome arm. We observed enhanced expression of genes involved in the PRC2 complex and PI3K/AKT and NOTCH pathways. Pharmacologic inhibition of the PI3K/AKT pathway delayed tumor growth and NE transformation in an EGFR-mutant patient-derived xenograft model. Our findings define a novel landscape of potential drivers and therapeutic vulnerabilities of NE transformation in lung cancer. SIGNIFICANCE: The difficulty in collection of transformation samples has precluded the performance of molecular analyses, and thus little is known about the lineage plasticity mechanisms leading to LUAD-to-SCLC transformation. Here, we describe biological pathways dysregulated upon transformation and identify potential predictors and potential therapeutic vulnerabilities of NE transformation in the lung. See related commentary by Meador and Lovly, p. 2962. This article is highlighted in the In This Issue feature, p. 2945.


Subject(s)
Adenocarcinoma of Lung , Lung Neoplasms , Neuroendocrine Tumors , Small Cell Lung Carcinoma , Adenocarcinoma of Lung/drug therapy , Humans , Lung Neoplasms/drug therapy , Mutation , Neuroendocrine Tumors/genetics , Neuroendocrine Tumors/pathology , Phosphatidylinositol 3-Kinases/genetics , Small Cell Lung Carcinoma/pathology
4.
Nat Commun ; 12(1): 3770, 2021 06 18.
Article in English | MEDLINE | ID: mdl-34145282

ABSTRACT

Circulating cell-free DNA from blood plasma of cancer patients can be used to non-invasively interrogate somatic tumor alterations. Here we develop MSK-ACCESS (Memorial Sloan Kettering - Analysis of Circulating cfDNA to Examine Somatic Status), an NGS assay for detection of very low frequency somatic alterations in 129 genes. Analytical validation demonstrated 92% sensitivity in de-novo mutation calling down to 0.5% allele frequency and 99% for a priori mutation profiling. To evaluate the performance of MSK-ACCESS, we report results from 681 prospective blood samples that underwent clinical analysis to guide patient management. Somatic alterations are detected in 73% of the samples, 56% of which have clinically actionable alterations. The utilization of matched normal sequencing allows retention of somatic alterations while removing over 10,000 germline and clonal hematopoiesis variants. Our experience illustrates the importance of analyzing matched normal samples when interpreting cfDNA results and highlights the importance of cfDNA as a genomic profiling source for cancer patients.


Subject(s)
Biomarkers, Tumor/genetics , Circulating Tumor DNA/genetics , Genetic Markers/genetics , Neoplasms/genetics , DNA Mutational Analysis/methods , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Humans , Mutation/genetics , Neoplasms/blood , Neoplasms/pathology
5.
J Interv Card Electrophysiol ; 58(3): 323-331, 2020 Sep.
Article in English | MEDLINE | ID: mdl-31456103

ABSTRACT

We have developed a system that could potentially be used to identify the site of origin of ventricular tachycardia (VT) and to guide a catheter to that site to deliver radio-frequency ablation therapy. This system employs the Inverse Solution Guidance Algorithm based upon Single Equivalent Moving Dipole (SEMD) localization method. The system was evaluated in in vivo swine experiments. Arrays consisting of 9 or 16 bipolar epicardial electrodes and an additional mid-myocardial pacing lead were sutured to each ventricle. Focal tachycardia was simulated by applying pacing pulses to each epicardial electrode at multiple pacing rates during breath hold at the end-expiration phase. Surface potentials were recorded from 64 surface electrodes and then analyzed using the SEMD method to localize the position of the pacing electrodes. We found a close correlation between the locations of the pacing electrodes as measured in computational and real spaces. The reproducibility error of the SEMD estimation of electrode location was 0.21 ± 0.07 cm. The vectors between every pair of bipolar electrodes were computed in computational and real spaces. At 120 bpm, the lengths of the vectors in the computational and real space had a 95% correlation. Computational space vectors were used in catheter guidance simulations which showed that this method could reduce the distance between the real space locations of the emulated catheter tip and the emulated arrhythmia origin site by approximately 72% with each movement. We have demonstrated the feasibility of using our system to guide a catheter to the site of the emulated VT origin.


Subject(s)
Catheter Ablation , Tachycardia, Ventricular , Algorithms , Animals , Body Surface Potential Mapping , Catheters , Humans , Reproducibility of Results , Swine , Tachycardia, Ventricular/surgery
6.
Cancer Med ; 9(17): 6093-6101, 2020 09.
Article in English | MEDLINE | ID: mdl-32633890

ABSTRACT

PURPOSE: The enucleation rate for retinoblastoma has dropped from over 95% to under 10% in the past 10 years as a result of improvements in therapy. This reduces access to tumor tissue for molecular profiling, especially in unilateral retinoblastoma, and hinders the confirmation of somatic RB1 mutations necessary for genetic counseling. Plasma cell-free DNA (cfDNA) has provided a platform for noninvasive molecular profiling in cancer, but its applicability in low tumor burden retinoblastoma has not been shown. We analyzed cfDNA collected from 10 patients with available tumor tissue to determine whether sufficient tumorderived cfDNA is shed in plasma from retinoblastoma tumors to enable noninvasive RB1 mutation detection. METHODS: Tumor tissue was collected from eye enucleations in 10 patients diagnosed with advanced intra-ocular unilateral retinoblastoma, three of which went on to develop metastatic disease. Tumor RB1 mutation status was determined using an FDA-cleared tumor sequencing assay, MSK-IMPACT. Plasma samples were collected before eye enucleation and analyzed with a customized panel targeting all exons of RB1. RESULTS: Tumor-guided genotyping detected 10 of the 13 expected somatic RB1 mutations in plasma cfDNA in 8 of 10 patients (average variant allele frequency 3.78%). Without referring to RB1 status in the tumor, de novo mutation calling identified 7 of the 13 expected RB1 mutations (in 6 of 10 patients) with high confidence. CONCLUSION: Plasma cfDNA can detect somatic RB1 mutations in patients with unilateral retinoblastoma. Since intraocular biopsies are avoided in these patients because of concern about spreading tumor, cfDNA can potentially offer a noninvasive platform to guide clinical decisions about treatment, follow-up schemes, and risk of metastasis.


Subject(s)
Circulating Tumor DNA/genetics , Genes, Retinoblastoma/genetics , Retinal Neoplasms/genetics , Retinoblastoma/genetics , Cancer Care Facilities , Child, Preschool , Circulating Tumor DNA/blood , DNA Mutational Analysis/methods , Exons/genetics , Eye Enucleation , Feasibility Studies , Genotyping Techniques , Humans , Infant , Infant, Newborn , New York City , Retinal Neoplasms/blood , Retinal Neoplasms/therapy , Retinoblastoma/blood , Retinoblastoma/therapy
SELECTION OF CITATIONS
SEARCH DETAIL