Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Sci Rep ; 14(1): 11248, 2024 05 16.
Article in English | MEDLINE | ID: mdl-38755228

ABSTRACT

An effective strategy for enhancing fruit production continuity during extended sweet pepper season involves adopting innovative biostimulants such as potassium silicate (PS) and vinasse. Adjusting PS and vinasse concentrations are crucial for maintaining the balance between vegetative and fruit growth, particularly in sweet pepper with a shallow root system, to sustain fruiting over prolonged season. However, the interaction between PS and vinasse and the underlying physiological mechanisms that extend the sweet pepper season under greenhouse conditions remain unclear. This study aimed to investigate the impact of PS and vinasse treatments on the yield and biochemical constituents of perennial pepper plants cultivated under greenhouse conditions. For two consecutive seasons [2018/2019 and 2019/2020], pepper plants were sprayed with PS (0, 0.5, and 1 g/l) and drenched with vinasse (0, 1, 2, and 3 l/m3). To estimate the impact of PS and vinasse on the growth, yield, and biochemical constituents of pepper plants, fresh and dry biomass, potential fruit yield, and some biochemical constituents were evaluated. Results revealed that PS (0.5 g/l) coupled with vinasse (3 l/m3) generated the most remarkable enhancement, in terms of plant biomass, total leaf area, total yield, and fruit weight during both growing seasons. The implementation of vinasse at 3 l/m3 with PS at 0.5 and 1 g/l demonstrated the most pronounced augmentation in leaf contents (chlorophyll index, nitrogen and potassium), alongside improved fruit quality, including total soluble solid and ascorbic acid contents, of extended sweet pepper season. By implementing the optimal combination of PS and vinasse, growers can significantly enhance the biomass production while maintaining a balance in fruiting, thereby maximizing the prolonged fruit production of superior sweet pepper under greenhouse conditions.


Subject(s)
Capsicum , Fruit , Silicates , Capsicum/growth & development , Capsicum/drug effects , Capsicum/metabolism , Fruit/growth & development , Fruit/drug effects , Fruit/metabolism , Biomass , Potassium/metabolism , Potassium/analysis , Seasons , Plant Leaves/growth & development , Plant Leaves/metabolism , Plant Leaves/drug effects , Biometry , Potassium Compounds/pharmacology
2.
Life (Basel) ; 13(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36676034

ABSTRACT

Seaweeds are increasingly intriguing as a sustainable source of bioactive compounds. They have applications in agriculture, fuels, feed, and food products. To become a cost-competitive product with zero waste, a biorefinery approach is applied, where several products are valorized at the same time. True-Algae-Max (TAM®) has been investigated for its ability to improve the yield and nutritional facts of a strawberry plant. Three concentrations of TAM (0, 50, and 100%) were examined by foliar spray in 2017 with 50% NPK chemical fertilizer. Results indicated that growth, yield, chlorophyll, and potassium content were significantly improved by TAM treatments. TAM50 % resulted in maximum root length, leaf area, plant fresh weight, fruit weight, and yield with an increase ranging from 10 to 110% compared to control. Compared to the NPK control, strawberries grown with TAM50% improved total soluble solids (TSS) from 7.58 to 10.12% and anthocyanin from 23.08 to 29.42 mg CGE 100 g-1. Noteworthily, this reduced total sugar, and total phenolics were boosted by TAM applications, while non-reducing sugar was reduced compared to control. On the other hand, whole seaweed biomass and TAM residuals were used for bioethanol production by acid scarification. The maximum bioethanol yield was observed in residual biomass (0.34 g g-1 dw), while the whole seaweed biomass showed only 0.20 g g-1 dw. These results proved the biorefinery concept of using seaweed extract as a biostimulator and bioethanol production.

3.
Plants (Basel) ; 10(4)2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33808406

ABSTRACT

In the present study, growth and productivity of hot pepper planted in the two successive summer seasons of 2017 and 2018 were evaluated under the effect of foliar spray of variable doses of potassium silicate (PS), and clove water extract (CWE) with different rates of nitrogen (N) fertilization application. The post-harvest resistance of hot pepper fruits to Alternaria alternata fungal infection, was also evaluated. Maximum plant height was achieved with the application of the highest rates of N, PS and CWE, while the intermediate rates were sufficient to reach the maximum number of branches, the highest leaf dry matter and chlorophyll accumulation. Fruit yield progressively increased with increasing the applied N rate. The foliar application of PS and CWE exerted a limited, yet positive effect on fruit yield. Generally, the least amount of fruit yield, amounting to 18.84 and 18.00 t ha-1, resulted from the application of the lowest N rate (144 kg ha-1) in the absence of PS and CWE. The highest significant fruit yield, amounting to 31.71 and 31.22 t ha-1, for 2017 and 2018, respectively, accompanied the application of the maximum levels of the three factors. The application of high N rates increased the post-harvest Alternaria fruit rot severity. The positive effect of CWE application in counterbalancing the negative effects associated with the high rates of N and PS may be related to the presence of phenolic and flavonoid compounds ellagic acid, benzoic acid, catechol gallic acid, rutin, myricetin, quercetin, apigenin and kaempferol as identified by High Performance Liquid Chromatography (HPLC).

4.
Plants (Basel) ; 10(6)2021 May 21.
Article in English | MEDLINE | ID: mdl-34064289

ABSTRACT

Bioactive molecules derived from seaweed extracts are revolutionary bio-stimulants used to enhance plant growth and increase yield production. This study evaluated the effectiveness of a commercially available seaweed liquid extract, namely, True-Algae-Max (TAM®), as a plant growth stimulant on nutritional, and antioxidant activity of Capsicum annuum. Three concentrations of TAM® (0.25, 0.5, and 1%) of various NPK: TAM® ratios were investigated via foliar spray, over 2017 and 2018 cultivation seasons, under greenhouse conditions. TAM® is rich in phytochemical compounds, such as ascorbic acid (1.66 mg g-1), phenolics (101.67 mg g-1), and flavonoids (2.60 mg g-1) that showed good antioxidant activity (54.52 mg g-1) and DPPH inhibition of 70.33%. Promoting measured parameter results stated the extensive potentiality of TAM® application, in comparison with conventional NPK treatment. Yield and composition of C. annuum were significantly improved in all TAM® treated groups, especially the TAM0.5% concentration, which resulted in maximum yield (4.23 Kg m-2) and significant amounts of profuse biological molecules like chlorophyll, ascorbic, phenolic compounds, flavonoids, and total nutrients. Compared to the NPK control treatments, C. annuum treated with TAM0.5% improved the total antioxidant activity of hot Pepper from 162.16 to 190.95 mg g-1. These findings indicate that the extract of seaweed can be used as an environmentally friendly, multi-functional biostimulant in the agricultural field for more sustainable production, in addition to reducing the use of hazardous synthetic fertilizers.

SELECTION OF CITATIONS
SEARCH DETAIL