Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
NMR Biomed ; 31(10): e3925, 2018 10.
Article in English | MEDLINE | ID: mdl-29675978

ABSTRACT

It is important to measure the large deformation properties of skeletal muscle in vivo in order to understand and model movement and the force-producing capabilities of muscle. As muscle properties are non-linear, an understanding of how the deformation state affects the measured shear moduli is also useful for clinical applications of magnetic resonance elastography (MRE) to muscle disorders. MRE has so far only been used to measure the linear viscoelastic (small strain) properties of muscles. This study aims to measure the shear moduli of human calf muscles under varying degrees of strain using MRE. Nine healthy adults (four males; age range, 25-38 years) were recruited, and the storage modulus G' was measured at three ankle angle positions: P0 (neutral), P15 (15° plantarflexed) and P30 (30° plantarflexed). Spatial modulation of magnetization (SPAMM) was used to measure the strain in the calf associated with the ankle rotations between P0 to P15 and P0 to P30. SPAMM results showed that, with plantarflexion, there was a shortening of the medial gastrocnemius and soleus muscles, which resulted in an expansion of both muscles in the transverse direction. Strains for each ankle rotation were in the range 3-9% (in compression). MRE results showed that this shortening during plantarflexion resulted in a mean decrease in G' in the medial gastrocnemius (p = 0.013, linear mixed model), but not in the soleus (p = 0.47). This study showed that MRE is a viable technique for the measurement of large strain deformation properties in vivo in soft tissues by inducing physiological strain within the muscle during imaging.


Subject(s)
Elasticity Imaging Techniques , Magnetic Resonance Imaging , Muscle, Skeletal/physiology , Adult , Biomechanical Phenomena , Elastic Modulus , Female , Humans , Male , Transducers
2.
J Sleep Res ; 27(4): e12616, 2018 08.
Article in English | MEDLINE | ID: mdl-29082563

ABSTRACT

The aim of this study was to investigate upper airway anatomy in quadriplegics with obstructive sleep apnea. Fifty subjects were recruited from three hospitals in Australia: people with quadriplegia due to spinal cord injury and obstructive sleep apnea (n = 11), able-bodied people with obstructive sleep apnea (n = 18), and healthy, able-bodied controls (n = 19). All underwent 3-Tesla magnetic resonance imaging of their upper airway. A subgroup (n = 34) received a topical vasoconstrictor, phenylephrine and post-phenylephrine magnetic resonance imaging. Mixed-model analysis indicated no significant differences in total airway lumen volume between the three groups (P = 0.086). Spinal cord injury-obstructive sleep apnea subjects had a significantly larger volume of soft palate (P = 0.020) and retroglossal lateral pharyngeal walls (P = 0.043) than able-bodied controls. Able-bodied-obstructive sleep apnea subjects had a smaller mandible volume than spinal cord injury-obstructive sleep apnea subjects and able-bodied control subjects (P = 0.036). No differences were seen in airway length between groups when controlling for height (P = 0.055). There was a marginal increase in velopharyngeal volume across groups post-phenylephrine (P = 0.050), and post hoc testing indicated the difference was confined to the able-bodied-obstructive sleep apnea group (P < 0.001). No other upper airway structures showed significant changes with phenylephrine administration. In conclusion, people with obstructive sleep apnea and quadriplegia do not have a structurally smaller airway than able-bodied subjects. They did, however, have greater volumes of soft palate and lateral pharyngeal walls, possibly due to greater neck fat deposition. The acute response to upper airway topical vasoconstriction was not enhanced in those with obstructive sleep apnea and quadriplegia. Changes in upper airway anatomy likely contribute to the high incidence in obstructive sleep apnea in quadriplegic subjects.


Subject(s)
Magnetic Resonance Imaging/methods , Quadriplegia/diagnostic imaging , Quadriplegia/epidemiology , Sleep Apnea, Obstructive/diagnostic imaging , Sleep Apnea, Obstructive/epidemiology , Adult , Aged , Australia/epidemiology , Female , Humans , Male , Middle Aged , Palate, Soft/diagnostic imaging , Palate, Soft/physiopathology , Pharynx/diagnostic imaging , Pharynx/physiopathology , Polysomnography/methods , Quadriplegia/physiopathology , Sleep Apnea, Obstructive/physiopathology , Tidal Volume/physiology
3.
Radiology ; 283(1): 222-230, 2017 04.
Article in English | MEDLINE | ID: mdl-27755913

ABSTRACT

Purpose To determine if healthy hepatic mechanical properties differ between pediatric and adult subjects at magnetic resonance (MR) elastography. Materials and Methods Liver shear moduli in 24 healthy pediatric participants (13 children aged 5-14 years [seven boys, six girls] and 11 adolescents aged 15-18 years [six boys, five girls]) and 10 healthy adults (aged 22-36 years [five men, five women]) were obtained with 3-T MR elastography at 28, 56, and 84 Hz. Relationships between shear moduli and age were assessed with Spearman correlations. Differences between age groups were determined with one-way analysis of variance and Tukey multiple comparisons tests. Results Liver stiffness values (means ± standard deviations) were significantly lower in children and adolescents than in adults at 56 Hz (children, 2.2 kPa ± 0.3; adolescents, 2.2 kPa ± 0.2; adults, 2.6 kPa ± 0.3; analysis of variance, P = .009) and 84 Hz (children, 5.6 kPa ± 0.8; adolescents, 6.5 kPa ± 1.2; adults, 7.8 kPa ± 1.2; analysis of variance, P = .0003) but not at 28 Hz (children, 1.2 kPa ± 0.2; adolescents, 1.3 kPa ± 0.3; adults, 1.2 kPa ± 0.2; analysis of variance, P = .40). At 56 and 84 Hz, liver stiffness increased with age (Spearman correlation, r = 0.38 [P = .03] and r = 0.54 [P = .001], respectively). Stiffness varied less with frequency in children and adolescents than in adults (analysis of variance, P = .0009). No significant differences were found in shear moduli at 28, 56, or 84 Hz or frequency dependence between children and adolescents (P = .38, P = .99, P = .14, and P = .30, respectively, according to Tukey tests). Conclusion Liver stiffness values are lower and vary less with frequency in children and adolescents than in adults. Stiffness increases with age during normal development and approaches adult values during adolescence. Comparing pediatric liver stiffness to adult baseline values to detect pediatric liver mechanical abnormalities may not allow detection of mild disease and may lead to underestimation of severity. © RSNA, 2016 Online supplemental material is available for this article.


Subject(s)
Elasticity Imaging Techniques/methods , Liver Diseases/diagnostic imaging , Liver Diseases/pathology , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging/methods , Adolescent , Adult , Age Factors , Child , Child, Preschool , Female , Humans , Male , Middle Aged , Young Adult
4.
J Physiol ; 592(21): 4763-74, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25217376

ABSTRACT

A patent upper airway is essential for survival. Increased age, obesity and some upper airway anatomical features are associated with failure to maintain upper airway patency during sleep, leading to obstructive sleep apnoea. However, many healthy subjects with these risk factors do not develop this condition. The aim of this study was to determine how anatomical factors and active dilator muscle contraction contribute to upper airway patency in healthy volunteers across a broad range of age and body mass index (BMI). A 'tagged' magnetic resonance imaging technique quantified respiratory-related motion of the anterior and lateral walls of the upper airway during quiet breathing in the supine position. Fifty-two subjects aged 22-68 years with BMI from 17.5 to 40.1 kg m(-2) were studied. Higher BMI was associated with smaller airway cross-sectional area at the level of soft palate (P < 0.05). The genioglossus moved anteriorly to dilate the upper airway during inspiration. This movement increased with increasing BMI, increasing age, a smaller airway area, and steeper tongue-base angle (all P < 0.05). Motion of the lateral upper airway at the soft-palate level was variable and less strongly linked to anatomical features of the upper airway. Multiple regression indicated that anterior genioglossus motion decreased with increasing airway area (P = 0.03) and with increasing tongue-base angle (P = 0.02). These data suggest that healthy humans, including those whose anatomy places them at increased risk of airway closure, can maintain upper airway patency by dynamically dilating the airway during inspiration.


Subject(s)
Respiratory System/anatomy & histology , Adult , Aged , Aging , Body Mass Index , Female , Humans , Linear Models , Magnetic Resonance Imaging , Male , Middle Aged , Models, Biological , Respiration , Young Adult
5.
J Mech Behav Biomed Mater ; 143: 105924, 2023 07.
Article in English | MEDLINE | ID: mdl-37276651

ABSTRACT

INTRODUCTION: Human adipose tissue (fat) deforms substantially under normal physiological loading and during impact. Thus, accurate data on strain-dependent stiffness of fat is essential for the creation of accurate biomechanical models. Previous studies on ex vivo samples reported human fat to be nonlinear and viscoelastic. When static compression is combined with magnetic resonance (MR) elastography (an imaging technique used to measure viscoelasticity in vivo), the large deformation properties of tissues can be determined. Here, we use magnetic resonance elastography to quantify fat shear modulus in vivo under increasing compressive strain and compare it to the underlying passive gluteal muscle. METHODS: The right buttocks of ten female participants were incrementally compressed at four levels while MR elastography (50 Hz) and mDixon images were acquired. Maps of tissue shear modulus (G*) were reconstructed from the MR elastography phase images. Tissue strain was estimated from registration of deformed and undeformed mDixon images. Linear mixed models were fit to the natural logarithm of the compressive strain and shear modulus data for each tissue. RESULTS: Shear modulus increased in an exponential relationship with compressive strain in fat: Gfat*=748.5*Cyy-1.18Pa, and to a lesser extent in muscle: Gmuscle*=956.4*Cyy-0.36Pa. The baseline (undeformed) stiffness of fat was significantly lower than that of muscle (mean G*fat = 752 Pa, mean G*muscle = 1000 Pa, paired samples t-test, t = -4.24, p = 0.001). However, fat exhibited a significantly higher degree of strain dependence (characterised by the exponent of the curve, t = -6.47, p = 0.0001). CONCLUSION: Static compression of human adipose tissue results in an increase in apparent viscoelastic shear modulus (stiffness), in an exponentially increasing relationship. The relationships defined here can be used in the development of physiologically realistic computational models for impact, injury and biomechanical modelling.


Subject(s)
Elasticity Imaging Techniques , Humans , Female , Elasticity Imaging Techniques/methods , Muscle, Skeletal/physiology , Adipose Tissue/diagnostic imaging , Adipose Tissue/physiology , Magnetic Resonance Imaging , Viscosity
6.
J Mech Behav Biomed Mater ; 138: 105638, 2023 02.
Article in English | MEDLINE | ID: mdl-36623403

ABSTRACT

INTRODUCTION: Knowledge of the nonlinear viscoelastic properties of the liver is important, but the complex tissue behavior outside the linear viscoelastic regime has impeded their characterization, particularly in vivo. Combining static compression with magnetic resonance (MR) elastography has the potential to be a useful imaging method for assessing large deformation mechanical properties of soft tissues in vivo. However, this remains to be verified. Therefore this study aims first to determine whether MR elastography can measure the nonlinear mechanical properties of ex vivo bovine liver tissue under varying levels of uniform and focal preloads (up to 30%), and second to compare MR elastography-derived complex shear modulus with standard rheological measurements. METHOD: Nine fresh bovine livers were collected from a local abattoir, and experiments were conducted within 12hr of death. Two cubic samples (∼10 × 10 × 10 cm3) were dissected from each liver and imaged using MR elastography (60 Hz) under 4 levels of uniform and focal preload (1, 10, 20, and 30% of sample width) to investigate the relationship between MR elastography-derived complex shear modulus (G∗) and the maximum principal Right Cauchy Green Strain (C11). Three tissue samples from each of the same 9 livers underwent oscillatory rheometry under the same 4 preloads (1, 10, 20, and 30% strain). MR elastography-derived complex shear modulus (G∗) from the uniform preload was validated against rheometry by fitting the frequency dependence of G∗ with a power-law and extrapolating rheometry-derived G∗ to 60 Hz. RESULTS: MR elastography-derived G∗ increased with increasing compressive large deformation strain, and followed a power-law curve (G∗ = 1.73 × C11-0.38, R2 = 0.96). Similarly, rheometry-derived G∗ at 1 Hz, increasing from 0.66 ± 1.03 kPa (1% strain) to 1.84 ± 1.65 kPa (30% strain, RM one-way ANOVA, P < 0.001), and the frequency dependence of G∗ followed a power-law with the exponent decreasing from 0.13 to 0.06 with increasing preload. MR elastography-derived G∗ was 1.4-3.1 times higher than the extrapolated rheometry-derived G∗ at 60 Hz, but the strain dependence was consistent between rheometry and MR elastography measurements. CONCLUSIONS: This study demonstrates that MR elastography can detect changes in ex vivo bovine liver complex shear modulus due to either uniform or focal preload and therefore can be a useful technique to characterize nonlinear viscoelastic properties of soft tissue, provided that strains applied to the tissue can be quantified. Although MR elastography could reliably characterize the strain dependence of the ex vivo bovine liver, MR elastography overestimated the complex shear modulus of the tissue compared to rheological measurements, particularly at lower preload (<10%). That is likely to be important in clinical hepatic MR elastography diagnosis studies if preload is not carefully considered. A limitation is the absence of overlapping frequency between rheometry and MR elastography for formal validation.


Subject(s)
Elasticity Imaging Techniques , Animals , Cattle , Elasticity Imaging Techniques/methods , Elasticity , Viscosity , Liver/diagnostic imaging , Rheology
7.
J Spinal Cord Med ; 45(4): 536-546, 2022 07.
Article in English | MEDLINE | ID: mdl-33166204

ABSTRACT

Context/objective: Obstructive sleep apnoea (OSA) develops soon after cervical spinal cord injury (SCI) at rates higher than the general population, but the mechanisms are not understood. This study aimed to determine whether OSA in SCI is associated with altered pharyngeal muscle dilatory mechanics during quiet breathing, as has been observed in the non-SCI injured with obstructive sleep apnoea.Design: Cross sectional imaging study.Setting: Medical research institute.Participants: Eight cervical SCI patients with OSA were recruited and compared to 13 able-bodied OSA patients and 12 able-bodied healthy controls of similar age and BMI.Interventions and outcome measures: 3T MRI scans of upper airway anatomy and tagged-MRI to characterize airway muscle motion during quiet breathing were collected for analysis.Results: Considerable variation in the patterns of inspiratory airway muscle motion was observed in the SCI group, with some participants exhibiting large inspiratory airway dilatory motions, and others exhibiting counterproductive narrowing during inspiration. These patterns were not dissimilar to those observed in the able-bodied OSA participants. The increase in airway cross-sectional area of able-bodied control participants was proportional to increase in BMI, and a similar, but not significant, relationship was present in all groups.Conclusion: Despite the limited sample size, these data suggest that SCI OSA patients have heterogeneous pharyngeal dilator muscle responses to the negative pressures occurring during inspiration but, as a group, appear to be more similar to able-bodied OSA patients than healthy controls of similar age and BMI. This may reflect altered pharyngeal pressure reflex responses in at least some people with SCI.


Subject(s)
Sleep Apnea, Obstructive , Spinal Cord Injuries , Humans , Magnetic Resonance Imaging , Pharynx/diagnostic imaging , Reflex , Sleep Apnea, Obstructive/diagnostic imaging , Spinal Cord Injuries/complications
8.
Biomech Model Mechanobiol ; 18(5): 1497-1505, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31055692

ABSTRACT

The aim of this study is to characterise the stiffness of white and grey matter in paediatric subjects using magnetic resonance elastography (MRE) and to determine whether these properties change throughout normal development. MRE was performed using a clinical 3T MRI scanner at three frequencies (30, 40 and 60 Hz) on 36 healthy paediatric subjects aged between 7 and 18 years (19 F) and 11 adults aged 23-44 years (6 F). Anatomical and diffusion tensor imaging was also collected. The stiffness quantified as the magnitude of the complex shear modulus (G*), fractional anisotropy (FA), mean diffusivity (MD) and volume of white and grey matter were calculated. One-way analysis of variance and Tukey's multiple comparison tests were used to compare data in age groups separated into children (7-12 years), adolescents (13-18 years) and adults (18+ years), and Spearman's correlations were performed for paediatric data. White and grey matter stiffness for each frequency and their frequency dependence was found to be very similar in paediatric and adult subjects (p > 0.05 all variables). No significant correlations were found when comparing G* with age, FA, MD or volume. Adult G*, FA, MD and volume values were within range of others reported in the literature. Paediatric white and grey matter stiffness values are similar to those of adults. We conclude that clinically, adult values can be used as a baseline measure in paediatric brain MRE.


Subject(s)
Brain/diagnostic imaging , Brain/physiology , Elasticity Imaging Techniques , Magnetic Resonance Imaging , Adolescent , Adult , Biomechanical Phenomena , Child , Female , Gray Matter/diagnostic imaging , Gray Matter/physiology , Humans , Male , White Matter/diagnostic imaging , White Matter/physiology , Young Adult
9.
J Appl Physiol (1985) ; 120(7): 758-65, 2016 Apr 01.
Article in English | MEDLINE | ID: mdl-26796752

ABSTRACT

Head and jaw position influence upper airway patency and electromyographic (EMG) activity of the main upper airway dilator muscle, the genioglossus. However, it is not known whether changes in genioglossus EMG activity translate into altered muscle movement during respiration. The aim of this study was to determine the influence of head and jaw position on dilatory motion of the genioglossus in healthy adult men during quiet breathing by measuring the displacement of the posterior tongue in six positions--neutral, head extension, head rotation, head flexion, mouth opening, and mandibular advancement. Respiratory-related motion of the genioglossus was imaged with spatial modulation of magnetization (SPAMM) in 12 awake male participants. Tissue displacement was quantified with harmonic phase (HARP) analysis. The genioglossus moved anteriorly beginning immediately before or during inspiration, and there was greater movement in the oropharynx than in the velopharynx in all positions. Anterior displacements of the oropharyngeal tongue varied between neutral head position (0.81 ± 0.41 mm), head flexion (0.62 ± 0.45 mm), extension (0.39 ± 0.19 mm), axial rotation (0.39 ± 0.2 mm), mouth open (1.24 ± 0.72 mm), and mandibular advancement (1.08 ± 0.65 mm). Anteroposterior displacement increased in the mouth-open position and decreased in the rotated position relative to cross-sectional area (CSA) (P = 0.002 and 0.02, respectively), but CSA did not independently predict anteroposterior movement overall (P = 0.057). The findings of this study suggest that head position influences airway dilation during inspiration and may contribute to variation in airway patency in different head positions.


Subject(s)
Head/physiology , Jaw/physiology , Movement/physiology , Muscle, Skeletal/physiology , Posture/physiology , Respiratory System/physiopathology , Adult , Cross-Sectional Studies , Electromyography/methods , Humans , Male , Mandibular Advancement/methods , Middle Aged , Motion , Mouth/physiology , Oropharynx/physiology , Respiration , Tongue/physiology , Wakefulness/physiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL