Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Entropy (Basel) ; 26(8)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39202091

ABSTRACT

We develop an action principle for producing a single-fluid two-constituent system with dissipation in general relativity. The two constituents in the model are particles and entropy. The particle flux creation rate is taken to be zero, while the entropy creation rate is non-zero. Building on previous work, it is demonstrated that a new term (the proper time derivative of the matter space "metric") is required in the Lagrangian in order to produce terms typically associated with bulk and shear viscosity. Equations of motion, entropy creation rate, and energy-momentum-stress tensor are derived. Using an Onsager approach of identifying thermodynamic "forces" and "fluxes", a model is produced which delivers the same entropy creation rate as the standard, relativistic Navier-Stokes equations. This result is then contrasted with a model generated in the spirit of the action principle, which takes as its starting point a specific Lagrangian and then produces the equations of motion, entropy creation rate, and energy-momentum-stress tensor. Unlike the equations derived from Onsager reasoning, where the analogs of the bulk and shear viscosity coefficients are prescribed "externally", we find that the forms of the coefficients in the second example are a direct result of the specified Lagrangian. Furthermore, the coefficients are shown to satisfy evolution equations along the fluid worldline, also a product of the specific Lagrangian.

2.
Phys Rev Lett ; 114(8): 087203, 2015 Feb 27.
Article in English | MEDLINE | ID: mdl-25768777

ABSTRACT

We study domain-wall (DW) motion induced by spin waves (magnons) in the presence of the Dzyaloshinskii-Moriya interaction (DMI). The DMI exerts a torque on the DW when spin waves pass through the DW, and this torque represents a linear momentum exchange between the spin wave and the DW. Unlike angular momentum exchange between the DW and spin waves, linear momentum exchange leads to a rotation of the DW plane rather than a linear motion. In the presence of an effective easy plane anisotropy, this DMI induced linear momentum transfer mechanism is significantly more efficient than angular momentum transfer in moving the DW.

3.
Phys Rev Lett ; 96(16): 161101, 2006 Apr 28.
Article in English | MEDLINE | ID: mdl-16712210

ABSTRACT

We investigate new paths to supermassive black hole formation by considering the general relativistic evolution of a differentially rotating polytrope with a toroidal shape. We find that this polytrope is unstable to nonaxisymmetric modes, which leads to a fragmentation into self-gravitating, collapsing components. In the case of one such fragment, we apply a simplified adaptive mesh refinement technique to follow the evolution to the formation of an apparent horizon centered on the fragment. This is the first study of the onset of nonaxisymmetric dynamical instabilities of supermassive stars in full general relativity.

SELECTION OF CITATIONS
SEARCH DETAIL