Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Am Chem Soc ; 146(7): 4752-4761, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38334447

ABSTRACT

Alloy anode materials have garnered unprecedented attention for potassium storage due to their high theoretical capacity. However, the substantial structural strain associated with deep potassiation results in serious electrode fragmentation and inadequate K-alloying reactions. Effectively reconciling the trade-off between low-strain and deep-potassiation in alloy anodes poses a considerable challenge due to the larger size of K-ions compared to Li/Na-ions. In this study, we propose a chemical bonding modulation strategy through single-atom modification to address the volume expansion of alloy anodes during potassiation. Using black phosphorus (BP) as a representative and generalizing to other alloy anodes, we established a robust P-S covalent bonding network via sulfur doping. This network exhibits sustained stability across discharge-charge cycles, elevating the modulus of K-P compounds by 74%, effectively withstanding the high strain induced by the potassiation process. Additionally, the bonding modulation reduces the formation energies of potassium phosphides, facilitating a deeper potassiation of the BP anode. As a result, the modified BP anode exhibits a high reversible capacity and extended operational lifespan, coupled with a high areal capacity. This work introduces a new perspective on overcoming the trade-off between low-strain and deep-potassiation in alloy anodes for the development of high-energy and stable potassium-ion batteries.

2.
Anal Chem ; 96(18): 7257-7264, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38664861

ABSTRACT

Confocal fluorescence imaging of fine structures of the cell membrane is important for understanding their biofunctions but is often neglected due to the lack of an effective method. Herein, we develop new amphiphilic rhodamine fluorescent probe RMGs in combination with basal imaging for this purpose. The probes show high signal-to-noise ratio and brightness and low internalization rate, making them suitable for imaging the fine substructures of the cell membrane. Using the representative probe RMG3, we not only observed the cell pseudopodia and intercellular nanotubes but also monitored the formation of migrasomes in real time. More importantly, in-depth imaging studies on more cell lines revealed for the first time that hepatocellular carcinoma cells secreted much more adherent extracellular vesicles than other cell lines, which might serve as a potential indicator of liver cells. We believe that RMGs may be useful for investigating the fine structures of the cell membrane.


Subject(s)
Cell Membrane , Fluorescent Dyes , Rhodamines , Fluorescent Dyes/chemistry , Rhodamines/chemistry , Humans , Cell Membrane/chemistry , Optical Imaging , Microscopy, Confocal/methods , Surface-Active Agents/chemistry
3.
Angew Chem Int Ed Engl ; : e202407658, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982589

ABSTRACT

Metallene is considered as an emerging family of electrocatalysts due to its atomically layered structure and unique surface stress. Here we propose a strategy to modulate the Bader charge transfer (BCT) between Pd surface and oxygenated intermediates via p-d electronic interaction by introducing single-atom p-block metal (M=In, Sn, Pb, Bi) into Pd metallene nanosheets towards efficient oxygen reduction reaction (ORR). X-ray absorption and photoelectron spectroscopy suggests that doping p-block metals could facilitate electron transfer to Pd sites and thus downshift the d-band center of Pd and weaken the adsorption energy of O intermediates. Among them, the developed Bi-Pd metallene shows extraordinarily high ORR mass activity of 11.34 A mgPd -1 and 0.86 A mgPd -1 at 0.9 V and 0.95 V in alkaline solution, respectively, representing the best Pd-based ORR electrocatalysts ever reported. In the cathode of a Zinc-air battery, Bi-Pd metallene could achieve an open-circuit voltage of 1.546 V and keep stable for 760 h at 10 mA cm-2. Theoretical calculations suggest that the BCT between Pd surface and *OO intermediates greatly affects the bond length between them (dPd-*OO) and Bi doping could appropriately reduce the amount of BCT and stretch the dPd-*OO, thus enhancing the ORR activity.

4.
Angew Chem Int Ed Engl ; : e202414859, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39352800

ABSTRACT

Silicon (Si)-based anodes offer high theoretical capacity for lithium-ion batteries but suffer from severe volume changes and continuous solid electrolyte interphase (SEI) degradation. Here, we address these challenges by selective methylation of 1,3-dioxolane (DOL), thus shifting the unstable bulk polymerization to controlled interfacial reactions and resulting in a highly elastic SEI. Comparative studies of 2-methyl-1,3-dioxolane (2MDOL) and 4-methyl-1,3-dioxolane (4MDOL) reveal that 4MDOL, with its larger ring strain and more stable radical intermediates due to hyperconjugation effect, promotes the formation of high-molecular-weight polymeric species at the electrode-electrolyte interface. This elastic, polymer-rich SEI effectively accommodates volume changes of Si and inhibits continuous side reactions. Our designed electrolyte enables Si-based anode to achieve 85.4% capacity retention after 400 cycles at 0.5 C without additives, significantly outperforming conventional carbonate-based electrolytes. Full cells also demonstrate stable long-term cycling. This work provides new insights into molecular-level electrolyte design for high-performance Si anodes, offering a promising pathway toward next-generation lithium-ion batteries with enhanced energy density and longevity.

5.
Angew Chem Int Ed Engl ; 62(6): e202214372, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36480194

ABSTRACT

Metallic Na is a promising metal anode for large-scale energy storage. Nevertheless, unstable solid electrolyte interphase (SEI) and uncontrollable Na dendrite growth lead to disastrous short circuit and poor cycle life. Through phase field and ab initio molecular dynamics simulation, we first predict that the sodium bromide (NaBr) with the lowest Na ion diffusion energy barrier among sodium halogen compounds (NaX, X=F, Cl, Br, I) is the ideal SEI composition to induce the spherical Na deposition for suppressing dendrite growth. Then, 1,2-dibromobenzene (1,2-DBB) additive is introduced into the common fluoroethylene carbonate-based carbonate electrolyte (the corresponding SEI has high mechanical stability) to construct a desirable NaBr-rich stable SEI layer. When the Na||Na3 V2 (PO4 )3 cell utilizes the electrolyte with 1,2-DBB additive, an extraordinary capacity retention of 94 % is achieved after 2000 cycles at a high rate of 10 C. This study provides a design philosophy for dendrite-free Na metal anode and can be expanded to other metal anodes.

6.
Anal Chem ; 94(28): 10256-10262, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35815650

ABSTRACT

Nitric oxide (NO) is a crucial neurotransmitter participating in many biological processes via nitrosylation reaction. NO produced in diverse subcellular regions also regulates the function of cells in different manners. A Golgi apparatus is rich in nitric oxide synthase and may serve as a potential therapeutic target for Alzheimer's disease (AD). However, due to the lack of an effective tool, it is difficult to reveal the relationship between Golgi-NO and AD. Herein, we report Golgi-NO as the first Golgi-targeted fluorescent probe for sensing and imaging NO in the Golgi apparatus. The probe is designed and synthesized by incorporating 4-sulfamoylphenylamide as a Golgi-targeted moiety to 6-carboxyrhodamine B, generating a fluorophore of Golgi-RhB with modifiable carboxyl, which is then combined with the NO recognition moiety of o-diaminobenzene. The probe shows superior analytical performance including accurate Golgi-targeted ability and high selectivity for NO. Moreover, using the probe, we disclose a significant increase of NO in Golgi apparatus in the AD model. This study provides a competent tool for studying the function and nitrosylation of NO in the Golgi apparatus in related diseases.


Subject(s)
Alzheimer Disease , Nitric Oxide , Alzheimer Disease/diagnostic imaging , Fluorescent Dyes , Golgi Apparatus , Humans
7.
Angew Chem Int Ed Engl ; 61(33): e202205043, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35654747

ABSTRACT

Many fluorophores/probes suffer from the interference of albumin in biosystems. Herein, we propose an effective strategy to overcome this interference by virtue of both an albumin-insensitive fluorophore and its changeable π-conjugation, and demonstrate the strategy by designing an oxazine-based fluorogenic probe for aminopeptidase N (APN). The modification on the N atom in the oxazine fluorophore with alanine through a cleavable linker locks the resulting probe in a non-conjugated, colorless and non-fluorescent state, so the non-specific interaction of albumin produces no spectroscopic response. APN can selectively cleave the alanine moiety, restoring the large π-conjugation and strong fluorescence. The capability of the probe to eliminate the albumin influence has been demonstrated by imaging APN in different cell lines, and by quantitatively determining APN in human serum and mouse urine. The present strategy may be useful for developing more specific fluorogenic probes for other enzymes.


Subject(s)
CD13 Antigens , Fluorescent Dyes , Alanine , Albumins , Animals , Fluorescent Dyes/chemistry , Humans , Mice , Oxazines
8.
J Am Chem Soc ; 143(41): 17136-17143, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34632770

ABSTRACT

Fluorescence bioimaging through the second near-infrared window (NIR-II, 1000-1700 nm) has attracted much attention due to its deep penetration and high contrast. However, exploring new fluorescent materials, especially small molecular fluorophores with long wavelength and high brightness, is still quite challenging. By expanding π-conjugation and enhancing the intramolecular charge transfer effect, herein we report a series of new xanthene-based NIR-II dyes, named VIXs. Among these dyes, VIX-4 exhibits the best performance with fluorescence emission at 1210 nm and high brightness and has been used for dynamically imaging the blood flow of mice at 200 fps. By virtue of high spatiotemporal resolution of the dynamic imaging, we can distinguish directly the artery and vein through the blood flow direction and measure the blood flow volume by the videos. This study provides not only an effective tool for high spatial and temporal resolution bioimaging but also a new and promising conjugated skeleton for NIR-II dyes.


Subject(s)
Optical Imaging
9.
Anal Chem ; 93(16): 6551-6558, 2021 04 27.
Article in English | MEDLINE | ID: mdl-33848128

ABSTRACT

Drug-induced liver injury (DILI) is the most common reason for the post-marketing withdrawal of drugs. Poor understanding of the mechanisms of DILI presents a large challenge in clinical diagnosis. Previous evidences indicate a potential relationship between reactive nitrogen species (RNS) and DILI. Hence, we developed two specific probes, Golgi-HNO and Mito-HNO, for the multicolored and simultaneous in situ imaging of nitroxyl (HNO) in the Golgi apparatus and mitochondria, respectively. We discovered a significant rise in HNO levels in the livers of mice with DILI, which means that for the first time, we revealed a positive correlation between HNO levels and DILI. Based on changes in the HNO level, we also successfully explored the extent of liver damage induced by an anticarcinogen, bleomycin. In addition, we uncovered catalase was involved in HNO synthesis, which is the unprecedented function of catalase. These findings demonstrate that HNO is an ideal biomarker for DILI diagnosis, and Golgi-HNO and Mito-HNO are ideal fluorescent probes to study in situ HNO changes in various physiological and biochemical processes.


Subject(s)
Chemical and Drug Induced Liver Injury , Nitrogen Oxides , Optical Imaging , Animals , Chemical and Drug Induced Liver Injury/diagnostic imaging , Fluorescent Dyes , Golgi Apparatus , Mice , Mitochondria
10.
Anal Chem ; 92(4): 3103-3110, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32003966

ABSTRACT

Golgi pH homeostasis affects many different biological processes, including glycosylation. Recent studies have demonstrated that transmembrane protein 165 (TMEM165) deficiency leads to Golgi glycosylation abnormalities by disturbing Golgi pH homeostasis. However, due to the lack of specific tools to measure Golgi pH in situ, evidence for TMEM165 involvement in H+ transport in the Golgi apparatus is still absent. Herein, the photoacoustic and fluorescent dual-mode probe CPH was developed for ratiometric detection of Golgi pH. CPH was proved to accumulate in the Golgi apparatus and reversibly image Golgi pH in real-time with high sensitivity in cells. Furthermore, we found that the absence of TMEM165 influenced H+ equilibrium and caused Golgi apparatus acidification. Our work provides strong evidence that TMEM165 regulates Golgi pH homeostasis. Moreover, we believe that CPH has the potential to be a practical tool to monitor Golgi pH in various biological processes.


Subject(s)
Antiporters/metabolism , Cation Transport Proteins/metabolism , Golgi Apparatus/chemistry , Golgi Apparatus/metabolism , Optical Imaging , Photoacoustic Techniques , Animals , Glycosylation , Mice , Oxidative Stress , Protons
11.
Anal Chem ; 90(10): 6020-6027, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29682967

ABSTRACT

Severe atmospheric haze caused by industrial pollution has severely affected human health and led to the increasing incidence of cardiopulmonary diseases, including pneumonia. Conventional methods for diagnosis of pneumonia are complicated and tedious, and current clinical imaging techniques might cause organ injuries to some extent. Therefore, an accurate, fast, and intact imaging method must be developed to diagnose pneumonia in the early stages. In this study, we propose a new two-photon fluorescence probe, named as ASPC, for detection of the activity of the inflammatory biomarker LTA4H through specific recognition and cleavage of amides containing the unnatural amino acid l-AspBzl. The activity of LTA4H in the lung tissues of mice was rapidly and accurately monitored for the first time and could be an indicator for diagnosis of pneumonia. The severity of pneumonia in mice caused by haze particulate was determined through imaging the activity of LTA4H as biomarker and confirmed using a commercial ELISA kit of interleukin-1ß. This work provides a promising method for clinical detection of pneumonia and for screening specific depressors of LTA4H as potential drug candidates.


Subject(s)
Disease Models, Animal , Inflammation/diagnostic imaging , Nerve Tissue Proteins/analysis , Optical Imaging , Photons , Pneumonia/diagnostic imaging , A549 Cells , Animals , Biomarkers/analysis , Cell Proliferation/drug effects , Humans , Mice , Nerve Tissue Proteins/antagonists & inhibitors , Recombinant Proteins/analysis , Tumor Cells, Cultured
13.
Nat Commun ; 15(1): 2033, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38448427

ABSTRACT

Constraining the electrochemical reactivity of free solvent molecules is pivotal for developing high-voltage lithium metal batteries, especially for ether solvents with high Li metal compatibility but low oxidation stability ( <4.0 V vs Li+/Li). The typical high concentration electrolyte approach relies on nearly saturated Li+ coordination to ether molecules, which is confronted with severe side reactions under high voltages ( >4.4 V) and extensive exothermic reactions between Li metal and reactive anions. Herein, we propose a molecular anchoring approach to restrict the interfacial reactivity of free ether solvents in diluted electrolytes. The hydrogen-bonding interactions from the anchoring solvent effectively suppress excessive ether side reactions and enhances the stability of nickel rich cathodes at 4.7 V, despite the extremely low Li+/ether molar ratio (1:9) and the absence of typical anion-derived interphase. Furthermore, the exothermic processes under thermal abuse conditions are mitigated due to the reduced reactivity of anions, which effectively postpones the battery thermal runaway.

14.
Adv Healthc Mater ; 12(20): e2300434, 2023 08.
Article in English | MEDLINE | ID: mdl-36975845

ABSTRACT

Spleen is a large immune organ in the body. Splenic operations such as splenectomy and intrasplenic injection are of paramount importance for immunological research and splenic diseases. Fluorescence imaging can vastly simplify these operations, but a specific spleen-targeting probe is still unavailable. Herein, the first specific spleen-accumulated fluorescent probe, VIX-S is reported, which fluoresces at 1064 nm and is highly stable. Systematic studies reveal the superior targeting and imaging performance of VIX-S for the spleen in both nude and haired mice. In vivo imaging indicates that the probe can image the morphology of spleen with a signal-background ratio of at least two-fold higher than that of the liver. Moreover, the application of VIX-S in imaging-guided splenic operation, including splenic injury and intrasplenic injection, is demonstrated, which may provide a practice tool for spleen research in the animal model.


Subject(s)
Spleen , Surgery, Computer-Assisted , Mice , Animals , Spleen/diagnostic imaging , Fluorescent Dyes , Liver/diagnostic imaging , Liver/surgery , Optical Imaging/methods , Surgery, Computer-Assisted/methods
15.
Front Psychol ; 14: 1062601, 2023.
Article in English | MEDLINE | ID: mdl-37621935

ABSTRACT

Objective: To explore the relationship between non-suicidal self-injury (NSSI) and childhood abuse in transgender people and the mediating effect of emotional dysregulation traits in the association between childhood abuse and non-suicidal self-injury. Patients and methods: From May to October 2021, 296 female-to-male (FTM) and 675 male-to-females (MTF), with age of 24.5 ± 6.4 years, were recruited using peer-driven sampling and anonymous questionnaires in Guangdong Province. The Childhood Abuse Questionnaire (CTQ-SF), the Personality Diagnostic Questionnaire (PDQ-4+) emotion regulation ability scale and the DSM-5 Clinical Examination of Stereotypic Disorders were used to measure childhood abuse experiences, emotional dysregulation traits and self-injurious behaviour, respectively. Results: Childhood abuse scores were positively correlated with both emotional dysregulation traits scores and non-suicidal self-injury (NSSI) behaviours (p < 0.01), and emotional dysregulation traits scores were positively correlated with NSSI behaviours (p < 0.01); emotional dysregulation traits partially mediated the association between childhood abuse and NSSI behaviours, with the mediating effect accounting for 23.23% of the total effect. In addition, among the factors of childhood abuse, emotional dysregulation traits mediated the association between emotional abuse, emotional neglect, sexual abuse, physical abuse, physical neglect and NSSI behaviour significantly, with the mediating effect accounting for 22.48%-32.58% of the total effect. Conclusion: Transgender NSSI behaviours are associated with childhood abuse and emotional dysregulation traits, and emotional dysregulation traits partially mediates the association between childhood abuse and NSSI behaviours, and screening for emotional dysregulation traits in transgender people and timely interventions are needed to improve the current situation of discrimination against transgender people.

16.
Nat Commun ; 14(1): 2655, 2023 May 09.
Article in English | MEDLINE | ID: mdl-37160951

ABSTRACT

The electrolyte solvation structure and the solid-electrolyte interphase (SEI) formation are critical to dictate the morphology of lithium deposition in organic electrolytes. However, the link between the electrolyte solvation structure and SEI composition and its implications on lithium morphology evolution are poorly understood. Herein, we use a single-salt and single-solvent model electrolyte system to systematically study the correlation between the electrolyte solvation structure, SEI formation process and lithium deposition morphology. The mechanism of lithium deposition is thoroughly investigated using cryo-electron microscopy characterizations and computational simulations. It is observed that, in the high concentration electrolytes, concentrated Li+ and anion-dominated solvation structure initiate the uniform Li nucleation kinetically and favor the decomposition of anions rather than solvents, resulting in inorganic-rich amorphous SEI with high interface energy, which thermodynamically facilitates the formation of granular Li. On the contrary, solvent-dominated solvation structure in the low concentration electrolytes tends to exacerbate the solvolysis process, forming organic-rich mosaic SEI with low interface energy, which leads to aggregated whisker-like nucleation and growth. These results are helpful to tackle the long-standing question on the origin of lithium dendrite formation and guide the rational design of high-performance electrolytes for advanced lithium metal batteries.

17.
Biosens Bioelectron ; 211: 114392, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35609457

ABSTRACT

Heat shock is a heat-related pathology characterized by a high body temperature and an obvious change of many enzymatic activities. Carboxylesterase (CE), as the major hydrolase in liver, is responsible for the hydrolysis of many drugs or the detoxification of various toxins from all organs. However, the correlation between heat shock and the CE activity in cells remains unknown, mainly due to the lack of a suitable research approach. Herein, a new water-soluble fluorescence probe, MYO-CE, with a specific bipiperidinyl recognition moiety has been developed for detecting the CE activity. MYO-CE reacted selectively with CE instead of other esterase, causing a large fluorescence off-on response at 560 nm with a detection limit of 0.39 U/mL. The applicability of MYO-CE for cell imaging was demonstrated by monitoring the alteration of the hepatocellular CE activity under inflammation. More importantly, we investigated the change of the CE activity during heat shock, uncovering a significant increase for the first time. This finding was further validated by a commercial colorimetric kit assay. The proposed probe shows a promising prospect for the CE study in cells under different pathological conditions.


Subject(s)
Biosensing Techniques , Carcinoma, Hepatocellular , Liver Neoplasms , Carboxylesterase , Fluorescent Dyes , Heat-Shock Response , Humans
18.
Biomed Res Int ; 2022: 1231446, 2022.
Article in English | MEDLINE | ID: mdl-35941977

ABSTRACT

Objective: Nanodelivery is a modern technology involving improved delivery methods and drug formulations. The current development and initial applications of nanocarriers are pointing to new directions in the current development of nanomedicine. Researchers are increasingly applying nanodelivery to the delivery of therapeutic or diagnostic agents. This article discusses the preparation and application of nanocomplexes and nanoparticles, as well as their potential future value in clinical research. Through a review and analysis, it is hoped that this will serve as a guide for the future development of various nanodelivery technologies and help researchers learn more about these technologies. Materials and Methods: A literature search was conducted using the keywords "Nano drug delivery" or "Nanomedical materials" or "Nano". A literature search was conducted in three major databases, PubMed, Web of Science, and Google Scholar, using the keywords such as "Nano drug delivery", "Nanomedical materials", or "Nanobubble drug delivery". The initial search was screened by title and abstract. In the full-text review, the titles or abstracts were reviewed according to the selection criteria based on the inclusion criteria. The risk of bias and study quality was assessed according to the Cochrane guidelines, and possible biases such as selection bias and good selection bias were included in the review. Results: A total of 297 studies were included in this study, of which 219 were excluded based on the screening criteria, resulting in the inclusion of 78 studies, the majority of which were original studies and clinical trials, and a small number of which provided design and route of administration analysis of nanomaterial particles and effect fluorograms and were studied in more depth. This paper summarises and reviews the views and directions of the included articles. The main directions include cyclodextrin-based or grafted cyclodextrin nanomaterials, nanobubbles, and stimuli-sensitive and temperature-sensitive nanodelivery systems. Conclusion: The use of innovative, targeted drug delivery systems is effective in cancer drug delivery by summarising the previous studies. However, nanodelivery systems' risks and therapeutic effects need to be evaluated before clinical application. Future research in the field of targeted drug delivery nanosystems should focus on the development of nanocarriers with high in vivo delivery capacity, good synergy with therapeutic agents, and milder short-term and long-term toxicological effects and conduct comprehensive preclinical trials on nanodrug delivery systems with high potential for clinical application as soon as possible, to find nanodrug delivery systems suitable for clinical use and put them into the clinical application as soon as possible.


Subject(s)
Cyclodextrins , Nanoparticles , Data Analysis , Drug Delivery Systems , Nanomedicine , Nanoparticles/therapeutic use
19.
Biotechnol Lett ; 32(11): 1745-52, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20632072

ABSTRACT

It is unclear whether green fluorescent protein (GFP) expression is maintained during the course of multilineage differentiation of muscle-derived stem cells (MDSCs). We isolated MDSCs from GFP-transgenic mice and transferred them to chondrogenic, neurogenic or myogenic media. Multilineage differentiation was examined by morphological observation, histological staining, immunocytochemical staining, real-time RT-PCR and Western blot. Both differentiated cells and non-differentiated cells maintained stable GFP expression until the cells exhibited a senescent phenotype. Thus, MDSCs from GFP-transgenic mice have multilineage potential in vitro and that GFP expression does not influence the multilineage potential of MDSCs (or vice versa).


Subject(s)
Cell Differentiation , Muscles/cytology , Stem Cells/physiology , Animals , Cell Culture Techniques , Culture Media/chemistry , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Mice , Mice, Transgenic , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL